
Lambda-operations for hermitian forms over
algebras with involution

Nicolas Garrel

Introduction
The theory of λ-rings was initiated by Grothendieck and Berthelot ([2]) in
the early days of K-theory, in particular in the context of the Riemann-Roch
theorem, and has grown to be a field of independent interest, as illustrated for
instance in the monograph [20], though still often connected with K-theory
(but see for instance [3] for an interesting take on λ-rings as related to the
field with one element).

A λ-ring is a commutative ring R endowed with operations λd : R → R
for all d ∈ N, which are usually understood as a certain flavour of "exterior
power", especially when R is some K-theory ring, and that should satisfy
some conditions which encapsulate the expected behaviour of exterior powers.
Note that there has been a shift of terminology over the years, and what was
originally called a λ-ring is now usually called a pre-λ-ring (and the term
λ-ring refers to what was initially called a special λ-ring). In this article we
will restrict to studying a pre-λ-ring structure, and we will leave the λ-ring
property to a later article.

Since λ-operations tend to be defined on K-theory rings, it is not sur-
prising that a structure of λ-ring can be defined on the Grothendieck-Witt
ring GW (K) of a field K (see [14]) since this ring is the 0th hermitian K-
theory ring of (K, Id). The corresponding "exterior power" operations were
introduced by Bourbaki in [4]. Given a bilinear space (V, b), we get a bilinear
space (Λd(V ), λd(b)):

λd(b) : Λd(V )× Λd(V ) −→ K
(u1 ∧ · · · ∧ ud, v1 ∧ · · · ∧ vd) 7−→ det (b(ui, vj)) .

Those operations, though very natural, make suprisingly few appearances
in the quadratic form literature; for instance, they do not even get a passing
mention in references such as [13], [5], [15] or [19]. This might be in part
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due to the fact that they are not well-defined on the Witt ring, which is
traditionally the preferred algebraic structure for working with quadratic
forms, but rather on the Grothendieck-Witt ring GW (K). The fact that
the λ-structure of GW (K) was only investigated formally as recently as [14],
compared to the technically much more difficult theorems on topological K-
theory, is another illustration of how λ-powers of bilinear forms have somehow
stayed under the radar.

If one wants to extend the λ-ring structure of K0(A) to non-commutative
rings, things do not look great: K0(A) is not even a ring, as there is no tensor
product of A-modules. Rather, if we fix some commutative ring R and an
R-algebra A, and if M and N are A-modules on the right, then M ⊗R N is
a module over A⊗R A. This means we can at least define an N-graded ring⊕

d∈NK0(A
⊗d) where the tensor product is over R. But in general this ring

has no reason to be commutative, let alone carry λ-operations. Of course
that can happen sometimes: for instance, if A is Morita-equivalent to R,
then replacing A by R does not change the isomorphism class of the ring,
and therefore it has the necessary structure. That condition on A exactly
means that A is a split Azumaya algebra over R. It turns out that the
construction still works for a non-split Azumaya algebra.

We are more interested here in the hermitian case, and also for simplicity
we will work over a field. Everything in this article still holds over a commu-
tative ring instead of a field, at the cost of enough technical details that we
prefer to first expose the constructions in the simpler setting of a base field.
The non-hermitian theory then becomes rather uninteresting as K0(A) ≃ Z
for any Azumaya algebra A over a field, but the hermitian version GW (A, σ)
for (A, σ) an Azumaya algebra with involution over a field with involution
(K, ι) is very rich. So, given such an algebra with involution, we can consider

ĜW
•
N(A, σ) =

⊕
d∈N

GW •(A⊗d, σ⊗d)

which is the hermitian K-theoretical version of the ring above. Here GW •(A, σ) =⊕
ε∈U(K,ι) GW ε(A, σ) where U(K, ι) = {ε ∈ K× | ει(ε) = 1}. This ĜW

•
N(A, σ)

is an N×U(K, ι)-graded ring for any algebra with involution, and we showed
in [10] that it is commutative when A is Azumaya. In this article we show
that it also has a natural pre-λ-ring structure, which is graded in the sense
that if x has degree g then λd(x) has degree d · g (Theorem 3.29). Precisely,
if (V, h) is an ε-hermitian space over (A⊗n, σ⊗n), we define (Altd(V ),Altd(h))
(Definition 3.20) as an εd-hermitian space over (A⊗dn, σ⊗dn) (here Alt stands
for "alternating", as we prefer to refer to those operations as "alternating
powers" rather than "exterior powers" for reasons which only truly matter
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in characteristic 2). This construction is heavily inspired by the construction
of λ-powers of involutions given in [12, §10.D]. This graded λ-structure is
also shown to be compatible with hermitian Morita equivalences.

There is also a (Z×U(K, ι))-graded version ĜW
•
Z(A, σ), where the nega-

tive degrees correspond to twisting the algebra using the involution. Its ring
structure is certainly interesting, but we will see that as far as the λ-structure
goes it does not bring anything more that ĜW

•
N(A, σ) (though ĜW

•
Z(A, σ)

becomes crucial if one wants to consider duality theorems, which we will
do in an upcoming article). On the other hand, when the involution is of
the first kind, a much more interesting construction appears, namely a ring
G̃W

•
(A, σ) which is graded over Z/2Z× µ2(K). In that case,

G̃W
•
(A, σ) = GW (K)⊕GW−1(K)⊕GW (A, σ)⊕GW−1(A, σ),

and if x ∈ GW ε(A, σ), λd(x) is in GW (K) when d is even, and is in
GW ε(A, σ) when d is odd.

Though G̃W
•
(A, σ) is the more interesting pre-λ-ring in applications, the

construction of alternating powers and the proof of their properties really
happens in ĜW

•
N(A, σ), and actually more precisely in the graded semir-

ing ŜW
•
N(A, σ), where the homogeneous components are isometry classes of

hermitian spaces (rather than formal differences of those). This leads us to
study pre-λ-semirings which are graded over a commutative monoid. The
theory of λ-operations over either a semiring or a graded ring has, as far as
we know, never been formally studied, and graded (semi)rings over monoids
are somewhat rare in the litterature (usually an N-graded ring is seen as a
special kind of Z-graded ring with trivial negative components). Therefore
Section 1 develops the theory of such graded pre-λ-semirings in details.

In Section 2 we recall (without proof) the definition and relevant prop-
erties of our various graded semi(rings), from ŜW

•
N(A, σ) to G̃W

•
(A, σ),

referring to [10] (note that there are some differences in notation between
this article and [10]).

Section 3 is the technical heart of the article, and is dedicated to the
λ-structure of ŜW

•
N(A, σ) (see Theorem 3.29), which is then transferred to

the other (semi)rings (Corollaries 3.30 and 3.32).
In Section 4 we give a more explicit description of the λ-operations in

S̃W
•
(A, σ), which are initially defined in Section 3 from (Altd(V ),Altd(h))

through a natural Morita equivalence. The corresponding "reduced" altenat-
ing powers are denoted (RAltd(V ),RAltd(h)), which are symmetric bilinear
spaces when d is even, and hermitian spaces when d is odd. Of special inter-
est to us is the connexion between even λ-powers and involution trace forms
(Corollary 4.14).
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The last short section is a discussion of the notion of determinant of an
involution, which is defined in [12] only when the algebra has even degree,
and for which we propose an extension to the odd degree case.

We also wish to mention in this introduction our main source of motiva-
tion for defining our λ-operations: the construction of cohomological invari-
ants of classical groups and algebras with involution (in the sense of [8]).

Indeed, the proof of Milnor’s conjecture by Voevodsky et al gives a canon-
ical morphism In(K) → Hn(K,µ2), where In(K) is the nth power of the
fundamental ideal I(K) ⊂ W (K) of the Witt ring and Hn(K,µ2) is Galois
cohomology. Thus, to define a degree n cohomological invariant, it is possible
to define instead an invariant with values in In.

For instance, Rost in [17] and Garibaldi in [7] define cohomological in-
variants of Spin groups, using well-chosen combinations of λ-operations of
quadratic forms in I3. In [11], we extend this strategy to describe all coho-
mological invariants of In. To define in this manner invariants of algebras
with involutions (or, more or less equivalently, of hermitian spaces over those
algebras), we therefore need to be able to attach quadratic forms to those
objects in a natural manner. The most common such construction is given
by trace forms: if (A, σ) is an algebra with involution of the first kind, we
can define the trace form TA : x 7→ TrdA(x

2), the involution trace form
Tσ : x 7→ TrdA(xσ(x)), its restriction T+

σ to the subspace of σ-symmetric
elements, and its restriction T−

σ to the subspace of anti-symmetric elements.
These forms are related by TA = T+

σ −T−
σ and Tσ = T+

σ +T−
σ , so it is enough

to know T+
σ and T−

σ . They have indeed been used to define or compute some
cohomological invariants, for instance in [1], [16] or [18].

It turns out that the involution trace form Tσ is nothing more than the
square ⟨1⟩2σ in G̃W

•
(A, σ), while T±

σ is essentially the same as λ2(⟨1⟩σ) (Corol-
lary 4.15). But our construction of a λ-structure on G̃W

•
(A, σ) gives a lot of

other new quadratic forms, namely the λ2d(⟨1⟩σ) for d > 1 (when 2d = deg(A)
this is actually nothing more than the determinant of σ). A possible strategy
to define cohomological invariants of (A, σ) is then to consider well-chosen
combinations of those λ2d(⟨1⟩σ), so that they actually take values in In for
some n. We show in an upcoming article that this does work when the index
of A is 2.
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Preliminaries and conventions
Commutative monoids

Let M be a commutative monoid. We write M× for the subgroup of invert-
ible elements (even when M is denoted additively). We say that a submonoid
N ⊆ M is saturated (also sometimes called "pure" or "unitary" in the lit-
erature) if whenever x + y ∈ N with x ∈ N then y ∈ N ; if M is actually a
group, this exactly means that N is a subgroup.

We write G(M) for the Grothendieck group of M , which we recall is
generated by formal differences of elements of M ; there is always a monoid
morphism M → G(M) but it is only injective if M satisfies the cancellation
property.

We use ComMon for the category of commutative monoids, and AbGp
for the category of abelian groups.

Field with involution

We fix throughout the article a base field k of characteristic not 2, and an
étale k-algebra K, endowed with an involutive automorphism ι with fixed
points k. So either k = K and ι is the identity, or K is a quadratic étale k-
algebra. All algebras and modules are assumed to be finite-dimensional over
k. Although it is possible that K ≃ k× k, we will usually pretend that K is
always a field, and speak of K-vector spaces and their dimension, for instance
(you may check that all K-modules in this article have constant rank so this
does not cause any trouble). You may exclude the case K ≃ k × k if you do
not want to think about this.

We write U(K, ι) = {ε ∈ K× | ει(ε) = 1} for the group of unitary elements
of (K, ι). If ι = IdK , then U(K, Id) = µ2(K).

Azumaya algebras with involution

We say that (A, σ) is an Azumaya algebra with involution over (K, ι) when A
is an Azumaya algebra over K, and σ is an involution on A whose restriction
to K is ι. Note that in the terminology of, for instance, [6], this would be
called an Azumaya algebra with involution over k, but here we do want to
fix (K, ι) and not simply k.

Also, we we choose not to speak of "central simple algebras" to take into
account that K might not be a field, exactly in the case that K ≈ k × k. In
that case, if we fix an identification K ≃ k×k, we get a canonical isomorphism
(A, σ) ≃ (E ×Eop, ε) where E is a central simple algebra over k and ε is the
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exchange involution (see [12, 2.14]). All in all we are exactly in the setting
of [12].

We write TrdA : A → K for the reduced trace of A, and NrdA : A → K for
its reduced norm. Note that if V is a right A-module, its reduced dimension
rdim(V ) is characterized by deg(A) rdim(V ) = dimK(V ) (when K ≃ k×k, we
technically get a reduced dimension at each of the two points in Spec(K), but
we will work with hermitian modules, where those two dimensions coincide);
if V is non-zero, it is the degree of the Azumaya algebra EndA(V ).

Recall that σ is of the first kind if ι = IdK , and of the second kind
(or unitary) if ι has order 2, and that involutions of the first kind can be
orthogonal or symplectic. In particular, if ι = IdK then (K, Id) is an algebra
with orthogonal involution.

For ε ∈ U(K, ι), we define the set Symε(A, σ) ⊂ A of ε-symmetric ele-
ments of (A, σ), meaning that they satisfy σ(a) = εa, and Symε(A×, σ) is
the subset of invertible ε-symmetric elements.

Hermitian forms

Let (A, σ) be an Azumaya algebra with involution over (K, ι). If ε ∈ U(K, ι),
an ε-hermitian module (V, h) over (A, σ) is a right A-module V , together with
an ε-hermitian form h : V × V → A (always assumed to be nondegenerate).
We take the convention that σ(h(x, y)) = εh(y, x). We often just speak of
an ε-hermitian form without mentioning the underlying module.

If V is non-zero, h induces the so-called adjoint involution σh on the cen-
tral simple algebra EndA(V ), characterized by h(u(x), y) = h(x, σh(u)(y)).
We call ε(h) = ε the sign of h (in the unitary case we need not have ε = ±1
but the terminology is still convenient).

If a ∈ Symε(A×, σ), the elementary diagonal ε-hermitian form ⟨a⟩σ :
A × A → A is defined by (x, y) 7→ σ(x)ay. A diagonal form ⟨a1, . . . , an⟩σ is
then the (orthogonal) sum of the ⟨ai⟩σ. When (A, σ) = (K, Id), we remove
the subscript σ and just write ⟨a1, . . . , an⟩ for diagonal bilinear forms.

We define the monoid SW ε(A, σ) of isometry classes of ε-hermitian forms
over (A, σ) (the zero module is included). We then define GW ε(A, σ) as
the Grothendieck group of SW ε(A, σ). We often omit the superscript when
ε = 1. Note that using tensor products over K, SW (K, ι) is a commutative
semiring, and GW (K, ι) is a commutative ring.

6



1 Graded pre-λ-semirings
The goal of this article is to define and study an appropriate structure of
graded pre-λ-ring on the various flavours of mixed Grothendieck-Witt rings
of an Azumaya algebra with involution: ĜW

•
Z(A, σ), and G̃W

•
(A, σ) if σ is of

the first kind (see Section 2 for the definition of those rings). But ultimately
this comes from a similar structure on ŜW

•
N(A, σ), which is only a semiring,

graded over a monoid. We wish to insist on the fact that this is the suitable
framework to build the theory, and showcase there is no need for a grading
over a group (this would change if we wished to include duality results).

We do not assume that the reader is familiar with λ-rings or with rings
graded over monoids, and we try to give a self-contained account of what is
needed for the article. We take [20] as our main reference for the classical
theory of (ungraded) λ-rings (though we also sometimes refer to [21]). We
make all the necessary adjustments to take the gradings into account (work-
ing with semirings instead of rings poses no problem whatsoever), and refer
directly to the proofs in [20] when they are completely straightforward to
adapt to our context.

1.1 Graded semirings

If M is a commutative monoid (which we usually denote additively), an M -
graded commutative monoid A is a commutative monoid endowed with a
decomposition A =

⊕
g∈M Ag. Any ungraded commutative monoid A can

be seen as a trivially M -graded monoid, by setting A0 = A and Ag = 0 if
g ̸= 0. In particular, ungraded monoids are essentially the same thing as
monoids graded over the trivial monoid. The elements of each Ag are called
homogeneous, and the set of homogeneous elements is denoted |A|. The
degree map ∂ : |A| → M ∪ {∞} sends a ∈ Ag \ {0} to its degree g ∈ M ,
and ∂(0) = ∞ (where ∞ is a formal element). A subset of A is said to be
homogeneous if it contains the homogeneous components (ie the component
in each Ag) of all its elements.

If A and B are M -graded, then a graded morphism f : A → B is a
monoid morphism such that f(Ag) ⊆ Bg for all g ∈ M . Given a function
φ : M → N , if A is M -graded and B is N -graded, we define the pushforward
φ∗(A) as the N -graded monoid given by φ∗(A)h =

⊕
φ(g)=h Ag for h ∈ N ,

and the pullback φ∗(B) as the M -graded monoid given by φ∗(B)g = Bφ(g)

for g ∈ M . Note that as ungraded monoids, φ∗(A) = A, so in particular if
φ : M → {0} is the trivial morphism, then φ∗(A) is just A seen as a trivially
graded ring. A lax graded morphism A → B is the data of some function
φ : M → N , and a graded morphism f : φ∗(A) → B, which is the same as a

7



graded morphism A → φ∗(B). We also say that f is a φ-graded morphism.
Let us write ComMonM for the category of M -graded commutative monoids
with graded morphisms.

Recall that a semiring is the same as a ring except that its underlying
additive structure is only that of a commutative monoid, not necessarily a
group. An M -graded semiring is a semiring R which is M -graded as an addi-
tive monoid, such that 1 ∈ R0 (the neutral component), and Rg ·Rh ⊆ Rg+h

for any g, h ∈ M . All graded semirings in this article will be commutative.
A (lax) graded semiring morphism is a (lax) graded morphism which is also
a semiring morphism (for a lax morphism of semirings, we require that the
function φ : M → N be a monoid morphism). Note that any ungraded semir-
ing is naturally a graded semiring for the trivial grading. We write SRingM

(resp. RingM) for the category of M -graded semirings (resp. rings).
The subset |R| ⊂ R is actually a multiplicative submonoid, and ∂ : |R| →

M ∪ {∞} is a monoid morphism (where m + ∞ = ∞ for all m ∈ M). An
element x ∈ |R| is called graded-invertible if for any g ∈ M , multiplication
by x induces an additive isomorphism from Rg to Rg+∂(x). The set of graded-
invertible elements is denoted by R× (which agrees with the usual notation
if R is ungraded), and it is a saturated submonoid of |R|. A homogeneous
element x ∈ |R| is invertible if and only if it is graded-invertible and ∂(x) is
invertible in M ; in particular, if M is a group, then R× = |R|× (the group
of invertible elements of the monoid |R|). On the other hand, in general an
invertible element of R need not be homogeneous, and therefore an invertible
element is not always graded-invertible.

If R is an M -graded commutative semiring and N is a commutative
monoid, then the monoid semiring R[N ] is a commutative (M ×N)-graded
semiring. In particular, if R is ungraded, R[M ] is M -graded. Note that
|R[N ]| ≃ |R| ×N as monoids, and (R[N ])× ≃ R× ×N . If S is a commuta-
tive (M × N)-graded R-semialgebra, and S× ∂−→ M × N → N is surjective,
then any set-theoretic section N → S× defines an isomorphism of additive
(M × N)-graded monoids S ≈ R[N ], but that only defines an isomorphism
of graded semirings if we can find a section as a monoid morphism.

An augmentation on a commutative M -graded semiring R is a graded
morphism δ̃R : R → Z[M ], and a morphism of augmented graded semirings
is a graded morphism which preserves the augmentation. We also define the
total augmentation δR : R → Z, which is an ungraded semiring morphism, as
the composition of δ̃R and the canonical ring morphism Z[M ] → Z sending
every element of M to 1.
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Example 1.1. Our recurring example in this section will be

SW •(K, ι) =
⊕

ε∈U(K,ι)

SW ε(K, ι)

which is obviously an U(K, ι)-graded additive monoid. It is actually an
U(K, ι)-graded semiring, using the tensor product over K as the multiplica-
tion. Indeed, if (Vi, hi) are εi-hermitian modules over (K, ι) for i ∈ {1, 2},
then (V1 ⊗K V2, h1 ⊗ h2) is an ε1ε2-hermitian module over (K, ι).

If ι = IdK , SW •(K, Id) is µ2(K)-graded, with two very different compo-
nents: SW (K, Id) is the semiring of symmetric bilinear forms over K, while
SW−1(K, Id) is rather uninteresting as antisymmetric forms are classified by
their (even) dimension. An element of SW (K, Id) has the form ⟨a1, . . . , an⟩
with ai ∈ K∗, and the product is determined by ⟨a⟩ · ⟨b⟩ = ⟨ab⟩. An element
of SW−1(K, Id) has the form r · H−1 where r ∈ N and H−1 is the antisym-
metric hyperbolic plane; we have ⟨a⟩ · H−1 = H−1 and H−1 · H−1 = 2H1

where H1 is the symmetric hyperbolic plane. The graded-invertible elements
are the elementary forms ⟨a⟩ ∈ SW (K, Id).

If ι ̸= IdK , then any element of SW ε(K, ι) has the form ⟨a1, . . . , an⟩ι with
ai ∈ K× such that ι(a) = εa. We can then write any element of SW •(K, ι)
as ⟨a1, . . . , an⟩ι with ai ∈ K×, with the understanding that each elementary
form ⟨ai⟩ι is in the component of degree εi = ι(ai)

ai
∈ U(K, ι). The ⟨ai⟩ι

are precisely the graded-invertible elements, with ⟨a⟩ι · ⟨b⟩ι = ⟨ab⟩ι, and
the Hilbert 90 theorem guarantees that there is a graded-invertible element
⟨aε⟩ι for each ε ∈ U(K, ι), so each SW ε(K, ι) is isomorphic as an additive
monoid to SW (K, ι), but non-canonically (the choice of aε is modulo k×,
but ⟨a⟩ι = ⟨b⟩ι only if a ≡ b modulo NK/k(K

×)). And in fact the morphism
∂ : (SW •(K, ι))× → U(K, ι) can be rewritten as K×/NK/k(K

×) → K×/k×,
which does not split in general, so SW •(K, ι) and SW (K, ι)[U(K, ι)] are not
isomorphic as graded semirings (not even non-canonically). Despite this, it is
true that SW •(K, ι) does not carry much more information than SW (K, ι),
which explains why it is rarely defined, but it is convenient for us to have a
unified treatment of the unitary and non-unitary case.

In the split case K ≃ k × k, the situation is simpler and SW •(K, ι) is
canonically isomorphic to N[k×], with SW (K, ι) ≃ N and U(K, ι) ≃ k×.

1.2 Pre-λ-semirings

Definition 1.2. Let M be a commutative monoid. An M-graded pre-λ-
semiring is an M-graded commutative semiring R endowed with functions
λd : R → R for all d ∈ N such that:
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• for all g ∈ M and d ∈ N, λd(Rg) ⊆ Rdg;

• for all x ∈ R, λ0(x) = 1 and λ1(x) = x;

• for all g ∈ M , x, y ∈ Rg and d ∈ N, λd(x+ y) =
∑

p+q=d

λp(x)λq(y).

Remark 1.3. It is easy to see that one may simply define functions λd :
Rg → Rdg for all d ∈ N and g ∈ M satisfying the axioms on the homogeneous
components, as they extend uniquely to functions λd : R → R satisfying the
definition. The image of a general element is computed from the images of
its homogeneous components using the axiom for sums.

Example 1.4. If (V, h) is an ε-hermitian space over (K, ι), then there is a
natural εd-hermitian form λd(h) on Λd(V ), given by

λd(b)(u1 ∧ · · · ∧ ud, v1 ∧ · · · ∧ vd) = det(h(ui, vj)).

This defines an U(K, ι)-graded pre-λ-semiring structure on SW •(K, ι).

Of course, a (lax) morphism of graded pre-λ-semirings, which we call a
graded λ-morphism, is a (lax) graded semiring morphism which commutes
with the operations λd. This defines a category λ − SRingM of M -graded
pre-λ-semirings, and also of lax graded pre-λ-semirings.

We now give a statement which justifies the idea that all the definitions
introduced so far really happen at the level of an N-grading.

Proposition 1.5. Let R be a commutative M-graded semiring, and let λd :
R → R be functions for all d ∈ N. If for any monoid morphism φ : N → M
the λd induce an N-graded pre-λ-ring structure on φ∗(R), then R is a graded
pre-λ-ring.

Let R and S be M-graded pre-λ-semirings and f : R → S be a semiring
morphism. If for any morphism φ : N → M the function f induces an
N-graded λ-morphism φ∗(R) → φ∗(S), then f is a λ-morphism.

Proof. For any g ∈ M , we write φg : N → M the unique morphism with
φg(1) = g. The fact that λd(Rg) ⊂ Rdg can be checked in φ∗

g(R). The fact
that λ0 = 1 and λ1 = Id can be checked on each Rg, and therefore on each
φ∗
g(R). Given x, y ∈ Rg, the formula for λd(x+ y) can be checked in φ∗

g(R).
Likewise, the fact that f is a λ-morphism can be checked on each Rg → Sg,

and therefore for each φ∗
g(R) → φ∗

g(S).
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Definition 1.6. Let R be an M-graded pre-λ-semiring, and let x ∈ R. We
define the λ-dimension dimλ(x) of x as the supremum in N ∪ {∞} of all
n ∈ N such that λn(x) ̸= 0. The subset of elements with finite λ-dimension
is denoted Rf.d..

We usually just say "dimension" for the λ-dimension when there is no
risk of confusion. Note that only 0 ∈ R has dimension 0, that dimλ(x+ y) ⩽
dimλ(x) + dimλ(y), and that if f is a graded λ-morphism, dimλ(f(x)) ⩽
dimλ(x).

It can be useful to rephrase the definition of a graded pre-λ-semiring in a
more abstract and compact way. For any commutative M -graded semiring
R, consider the commutative multiplicative monoid

Λ(R) = 1 + tR[[t]] ⊂ R[[t]] (1)

where R[[t]] is of course the semiring of formal series over R, and define for
any g ∈ M the submonoid

Λ(R)g =
{∑

adt
d ∈ Λ(R) | ∀n ∈ N, ad ∈ Rdg

}
. (2)

Then we get an M -graded monoid

ΛM(R) =
⊕
g∈M

Λ(R)g. (3)

There is a natural graded monoid morphism ηR : ΛM(R) → R (where R is
seen as an additive monoid) which sends a series

∑
adt

d to a1. Defining func-
tions λd : Rg → Rdg for all g ∈ M and d ∈ N∗ is the same as defining a single
homogeneous function λt : R → ΛM(R), using λt(x) = 1 +

∑
d>0 λ

d(x)td,
and from the definition of the monoid structure on Λ(R) one can easily check
that the λd define a graded pre-λ-semiring structure if and only if λt is an
additive morphism which is a section of ηR.

If f : S → R is any M -graded semiring morphism, then it induces a
commutative diagram

ΛM(S) S

ΛM(R) R

ηS

f∗ f

ηR

and when R and S are graded pre-λ-semirings, then f is a λ-morphism if

11



and only if the following natural diagram commutes:

S ΛM(S)

R ΛM(R).

λt

f f∗

λt

An element x ∈ R is finite-dimensional exactly when λt(x) ∈ R[[t]] is a
polynomial, and its dimension is then the degree of this polynomial.

Remark 1.7. If φ : M → N is a monoid morphism, there is a canonical
morphism ΛM(R) → ΛN(φ∗(R)), which is compatible with the construction
of ηR. This means that a structure of M -graded pre-λ-semiring on R canoni-
cally induces a structure of N -graded pre-λ-semiring on φ∗(R). In particular,
taking φ to be the trivial morphism φ : M → {0}, it induces a structure of
(ungraded) pre-λ-semiring on R (as Λ{0}(φ∗(R)) is just Λ(R)).

1.3 Augmentation

The following proposition is immediate from the pre-λ-semiring axioms:

Proposition 1.8. If R is an M-graded pre-λ-semiring and N is a commu-
tative monoid, then R[N ] has a canonical (M × N)-graded pre-λ-semiring
structure given by λd(x · h) = λd(x) · (dh) for all d ∈ N, x ∈ R and h ∈ N .

Moreover, the canonical semiring morphism R[N ] → R is a λ-morphism.

Example 1.9. There is a canonical pre-λ-ring structure on Z, given by
λd(n) =

(
n
d

)
, which then induces a canonical M -graded pre-λ-ring structure

on the monoid ring Z[M ].

Definition 1.10. An augmentation of an M-graded pre-λ-semiring R is an
augmentation δ̃R : R → Z[M ] which is a λ-morphism. The total augmenta-
tion map δR : R → Z is then an ungraded λ-morphism.

We get a category λ − SRing+
M (resp. λ − Ring+

M) of augmented M -
graded pre-λ-semirings (resp. rings).

Example 1.11. The graded dimension map SW •(K, ι) → Z[U(K, ι)], which
sends the isometry class of (V, h) in SW ε(K, ι) to dim(V ) · ε, is an augmen-
tation on the graded pre-λ-semiring SW •(K, ι).

In general, we want to give the augmentation map the interpretation of
a "graded dimension", but it should not be confused with the λ-dimension.
Since

(
n
d

)
̸= 0 for all d ∈ N when n < 0, an element x ∈ Rf.d. must satisfy

δR(x) ⩾ 0. Also, since the λ-dimension of n ∈ N is just n, and a λ-morphism
lowers the λ-dimension, we see that we must have 0 ⩽ δR(x) ⩽ dimλ(x).

12



1.4 Positive structure

In practice, a lot of (pre)-λ-rings, such as the K0 ring of a commutative
ring or a topological space, are defined as Grothendieck rings of semirings
(of modules or vector bundles in those examples), which means that general
elements are formal differences of "concrete" elements which enjoy a better
behaviour.

First we take a look at Grothendieck groups and Grothendieck rings.
Our first observation is that the Grothendieck ring of a semiring is "the
same thing as" the Grothendieck group of its underlying additive monoid.
More precisely, if R is a commutative semiring, and G(R) is its additive
Grothendieck group, there is a unique ring structure on G(R) such that the
canonical map R → G(R) is a semiring morphism, and this uniquely defined
ring G(R) satisfies the expected universal property that any (commutative)
semiring morphism R → S where S is actually a ring extends uniquely to a
ring morphism G(R) → S, and on the level of additive monoids, this is the
map given by the universal property of the Grothendieck group.

Let us consider the following commutative diagram of categories and func-
tors (which as always in those situations only commutes up to a natural
isomorphism):

SRing ComMon

Ring AbGp

(4)

The vertical maps are inclusion of subcategories, and the horizontal ones
are forgetful functors to the additive structure. The vertical inclusions are
actually reflexive, with reflectors the Grothendieck group/ring construction.
Then what we discussed above can be formalized in this more general setting:
let

C D

A B

U

V

I J

be a commutative square of functors. We say that it has the reflector ex-
tension property if U and V are faithful, I and J are inclusion of reflexive
subcategories, with respective reflectors F : C → A and G : D → B, and
V ◦ F = G ◦ U .

In that situation, given X ∈ C, let Y ∈ A be such that V (Y ) = G(U(X)).
We have a canonical arrow U(X) → J(G(U(X))) given by the adjunction
G ⊣ J , which defines in turn U(X) → J(V (Y )) = U(I(Y )). If this morphism
comes from a (necessarily unique) morphism X → I(Y ), then the associated
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morphism F (X) → Y is an isomorphism. Applying this to diagram (4) is
exactly what we explained above regarding Grothendieck groups/rings.

It is equally easy to see that if M is a commutative monoid, the inner
squares (and thus the outer square too) of

SRingM ComMonM ComMon

RingM AbGpM AbGp

have the reflector extension property. This means that if R is an M -graded
commutative semiring, its M -graded Grothendieck ring is just G(R) =

⊕
g∈M G(Rg)

with a unique compatible structure.

Proposition 1.12. The squares in the following diagram have the reflector
extension property:

λ-SRing+
M λ-SRingM SRingM

λ-Ring+
M λ-RingM RingM .

Proof. Let S be an M -graded pre-λ-semiring, and let G(S) be its M -graded
Grothendieck ring. We need to show that G(S) has a unique structure of
M -graded pre-λ-ring such that the canonical morphism S → G(S) is a λ-
morphism, and that this pre-λ-ring satisfies the universal property.

Interpreting the λ-structure as a monoid morphism λt : S → ΛM(S),
and observing that ΛM(G(S)) is actually a group since G(S) is a ring, the
universal property of Grothendieck groups tells us that there is a unique
λt : G(S) → ΛM(G(S)) such that the natural diagram

S ΛM(S)

G(S) ΛM(G(S))

λt

λt

commutes.
If R is an M -graded pre-λ-ring and S → R is a λ-morphism, then we

need to check whether the diagram of abelian groups

G(S) ΛM(G(S))

R ΛM(R)

λt

λt

14



commutes. But since both compositions G(S) → ΛM(R) extend S →
ΛM(R), this is true by universal property.

The case where S is augmented is proved similarly, as the augmentation
is just the data of a λ-morphism S → Z[M ].

Example 1.13. We define GW •(K, ι) = G(SW •(K, ι)) as augmented U(K, ι)-
graded pre-λ-rings. The component of degree ε ∈ U(K, ι) is simply GW ε(K, ι) =
G(SW ε(K, ι)).

As we mentioned earlier, when R is a pre-λ-ring generated additively by
some semiring S ⊆ R, we would like S to enjoy good properties, that will
somewhat extend to R. We adapt the treatment in [21] to formalize those
properties:

Definition 1.14. Let S be an augmented M-graded pre-λ-semiring. We say
that S is rigid if it is cancellative as an additive monoid, and:

1. if x ∈ |S| satisfies δS(x) = 0, then x = 0;

2. every 1-dimensional homogeneous element is graded-invertible.

If S is rigid, we write ℓ(S) for the set of 1-dimensional homogeneous ele-
ments, and we call those line elements.

Example 1.15. Our usual example SW •(K, ι) is rigid, and actually we even
get ℓ(SW •(K, ι)) = (SW •(K, ι))×. Indeed, we have stated in Example 1.1
that the graded-invertible elements are the 1-dimensional forms, which are
the line elements. The other condition is clear: a 0-dimensional form is just
the zero element.

Lemma 1.16. Let S be a rigid augmented M-graded pre-λ-semiring. Then
for any x ∈ |S|, we have δS(x) = dimλ(x).

Proof. Let d = δS(x). We already know that d ⩽ dimλ(x). Now since δS is a
λ-morphism, δS(λd+1(x)) =

(
d

d+1

)
= 0 so λd+1(x) = 0, and d = dimλ(x).

Definition 1.17. Let R be an augmented M-graded pre-λ-semiring. A pos-
itive structure on R is the data of a sub-structure R⩾0 ⊆ R such that:

• R⩾0 is rigid;

• (R⩾0)
× ⊂ R×;

• if x ∈ |R|, there are a, b ∈ |R⩾0| such that x+ a = b.
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The elements of R⩾0 are called positive, and we also set R>0 = R⩾0 \ {0}.
We also write ℓ(R) = ℓ(R⩾0), and still call those elements the line elements
of R.

To keep terminology short, we say that an augmented M-graded pre-λ-
semiring with positive structure is an M-structured semiring.

Note that there is an obvious category of M -structured semirings, which
preserve the positive structure, and also a similar category with lax λ-morphisms.

Example 1.18. Clearly, any rigid augmented M -graded pre-λ-semiring is
M -structured, with itself as the positive structure.

Example 1.19. If R is an M -structured semiring, then R[N ] is an (M×N)-
structured semiring, with (R[N ])⩾0 = (R⩾0)[N ] and ℓ(R[N ]) = ℓ(R)×N .

As N ⊂ Z is a positive structure for Z, N[M ] is a positive structure for
Z[M ] with ℓ(Z[M ]) = M .

Proposition 1.20. Let S be a rigid M-structured semiring. Then it is a
positive structure on G(S).

Proof. Note that since S is cancellative, the canonical S → G(S) is injective,
and we can treat it as an inclusion. The only thing to show is that S× ⊂
G(S)×. If a ∈ S×, then multiplication by a induces isomorphisms Sg →
Sg+∂(a) for all g ∈ M , and therefore by functoriality induces isomorphisms
G(Sg) → G(Sg+∂(a)).

Example 1.21. This means that SW •(K, ι) is a positive structure on GW •(K, ι),
and this is the structure we have in mind when we say that GW •(K, ι) is an
U(K, ι)-structured ring.

Lemma 1.22. Let R be an M-structured semiring. Then ℓ(R) is a saturated
submonoid of R×, and therefore a saturated submonoid of the multiplicative
monoid |R|.

Proof. We have by definition that ℓ(R) ⊆ (R⩾0)
× ⊆ R×. Lemma 1.16 shows

that ℓ(R) is a submonoid, since δR is multiplicative. Since R× is saturated
in |R|, it is enough to show that ℓ(R) is saturated in R×.

Let x, y, z ∈ R× such that xy = z and x, z ∈ ℓ(R). We first show that y is
positive. Since x is graded-invertible in R⩾0 and ∂(z) = ∂(x)+ ∂(y), we may
write z = x ·y′ with y′ positive of degree ∂(y), and since x is graded-invertible
in R, then y = y′.

Then the equality δR(x)δR(y) = δR(z) gives 1× δR(y) = 1 so dimλ(y) = 1
by Lemma 1.16, and by definition y is a line element.
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Note that positive elements have finite dimension since they are sums of
homogeneous positive elements. The positive structure ensures that R enjoys
a well-behaved theory of dimension:

Proposition 1.23. Let R be an M-structured semiring. Then for any el-
ement x ∈ Rf.d., we have dimλ(x) = δR(x), and the leading coefficient of
λt(x) is a line element. In particular, all elements of λ-dimension 1 are line
elements, and dimλ is an additive function on Rf.d..

Proof. Let A ⊆ R be the subset of elements x such that λt(x) is a polynomial
of degree δR(x) whose leading coefficient is a line element. By definition
A ⊆ Rf.d, and we want to show that they are actually equal, which takes
care of all statements in the proposition.

First, we see that |R⩾0| ⊆ A. Indeed, if x is a positive homogeneous
element, then dimλ(x) = δR(x) by Lemma 1.16, and if this dimension is n,
then λn(x) is a line element because it is positive and has dimension

(
n
n

)
= 1.

Then, we see that A is stable by sum: if x, y ∈ A, then λt(x + y) =
λt(x)λt(y), so if atn and btm are the leading terms of λt(x) and λt(y) respec-
tively, the leading term of λt(x + y) is abtn+m with ab ∈ ℓ(R) according to
Lemma 1.22 (it is the leading term since ab ̸= 0, which can be deduced from
ab ∈ ℓ(R)). Note that n+m is δR(x) + δR(y) = δR(x+ y).

This shows that R⩾0 ⊆ A. Now let z ∈ Rf.d, and let us write x + z = y
with x, y ∈ R⩾0 (in particular, x, y ∈ A). Let atn, btm and ctr be the leading
terms of λt(x), λt(y), and λt(z) respectively. Since a ∈ ℓ(R) ⊆ R×, we have
ac ̸= 0, so ac is the leading coefficient of λt(x)λt(z), and thus ac = b since
λt(y) = λt(x)λt(z). Since ℓ(R) is saturated in |R| by Lemma 1.22, we get
c ∈ ℓ(R). Also the degree of λt(z) is r = n−m which is δR(x)−δR(y) = δR(z),
and we do get z ∈ A.

Remark 1.24. A morphism of M -structured rings preserves the augmenta-
tion, therefore it preserves the dimension of finite-dimensional elements, and
also induces a monoid morphism between line elements.

1.5 Determinant

We saw in proposition 1.23 that if R is M -structured and x ∈ R has dimen-
sion n, then λn(x) is a line element. This construction can be extended to
all elements, not just finite-dimensional ones, but the price to pay is that we
need to consider G(ℓ(R)) instead of ℓ(R).

Remark 1.25. Recall that if M is actually a group, then R× is a group, as
well as ℓ(R) (as it is a saturated submonoid), so in that case G(ℓ(R)) = ℓ(R).
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Proposition 1.26. Let R be an M-structured semiring. There is a unique
monoid morphism

det : R → G(ℓ(R)),

which we call the determinant, such that if dimλ(x) = n ∈ N, then det(x) =
λn(x). If f is a morphism of M-structured rings, then det(f(x)) = f(det(x)).

Proof. We have from Proposition 1.23 a well-defined function det : Rf.d →
ℓ(R). It is a monoid morphism since det(x) is the leading coefficient of
λt(x) and λt(x + y) = λt(x)λt(y) (and since the leading coefficients are line
elements, their product is non-zero).

This then extends uniquely to G(Rf.d) → G(ℓ(R)). But now note that

R⩾0 ⊆ Rfd ⊆ R ⊆ G(R⩾0) = G(Rf.d) = G(R)

so we have our unique extension to the additive monoid R.
The compatibility with morphisms is easy to see since they preserve the

λ-dimension (see Remark 1.24) and f(λn(x)) = λn(f(x)) if x is of finite
dimension n.

Example 1.27. We have seen that ℓ(GW •(K, ι)) ≃ K×/NK/k(K
×) (when

K = k, this has to be understood as K×/(K×)2). For an ε-hermitian space
(V, h), the above notion of determinant then coincides with the classical one:
the Gram determinant of an orthogonal basis is determined by the isometry
class of (V, h) only up to an element of NK/k(K

×), and the corresponding
class in K×/NK/k(K

×) is the determinant of (V, h).
When ι = IdK , this is the usual determinant of a bilinear form as a square

class, and note that for an anti-symmetric form the determinant is always
trivial. When ι ̸= IdK , the determinant is usually only given a definition for
ε = 1, where it then takes values in k×/NK/k(K

×).

1.6 Contractions

In this section we explain how to transfer structure and properties between
the various flavours of mixed Grothendieck-Witt (semi)rings. The basic con-
nexion between these different versions is:

Definition 1.28. Let R be an M-graded semiring and let φ : M → N be
a surjective monoid morphism. A contraction of R along φ is a φ-graded
morphism R → S such that for all g ∈ M , Rg → Sφ(g) is an isomorphism.

Proposition 1.29. Let f : R → S be a contraction along some φ : M → N .
It defines a relation between graded pre-λ-semiring structures on R and on S,
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such that two such structures are in relation if f is a lax λ-morphism. Then
this relation is actually a bijection between graded pre-λ-semiring structures
on R and S.

Likewise, the contraction defines a bijection between augmented structures
on R and S, and under this correspondence R is rigid if and only S is. In
particular, this also gives a bijective correspondence between structures of
M-structured semiring on R, and N-structured semiring on S.

Proof. For any g ∈ M and d ∈ N, f induces isomorphisms Rg
∼→ Sg and

Rdg → Sdg, so clearly a system of functions λd : Rg → Rdg uniquely de-
termines a system λd : Sg → Sdg and conversely. Also, from the axioms of
λ-operations it is clear that one is a pre-λ-structure if and only if the other
one is too.

Likewise, under the isomorphisms Rg → Sg, functions Rg → Z and Sg →
Z are in bijective correspondence, and one is an augmentation if and only if
the other one is.

It is easy to see that for any x ∈ |R|, x is quasi-invertible (resp. a line
element) if and only if f(x) is, which shows that R is rigid if and only S
is.

2 Mixed Grothendieck-Witt rings
In this section, we review the definitions and results from [10] about the mixed
Grothendieck-Witt ring which are necessary for our purposes. We adopt
slightly different conventions, which we will explain, but it is completely
straightforward to adapt the results, so we just refer to [10] for all results in
this section.

Definition 2.1. Let (A, σ) and (B, τ) be Azumaya algebras with involution
over (K, ι). A hermitian Morita equivalence from (B, τ) to (A, σ) is a B-A-
bimodule V endowed with a regular ε-hermitian form h : V × V → A over
(A, σ), with ε ∈ U(K, ι), such that the action of B on V induces a K-algebra
isomorphism B ≃ EndA(V ), under which τ is sent to the adjoint involution
σh (which means that h(bu, v) = h(u, τ(b)v)).

There exists such an equivalence if and only if A and B are Brauer-
equivalent; in this case, the isomorphism class of the bimodule V is unique,
and if we fix such a V , the ε-hermitian form h is unique up to a multiplicative
scalar: if h′ is another choice, there is some λ ∈ K× such that h′ = ⟨λ⟩h.

Definition 2.2. The hermitian Brauer 2-group Brh(K, ι) of (K, ι) is the
category whose objects are Azumaya algebras with involutions over (K, ι), and
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morphisms (B, τ) → (A, σ) are isomorphism classes of ε-hermitian Morita
equivalences from (B, τ) to (A, σ).

The composition of (U, g) : (C, θ) → (B, τ) and (V, h) : (B, τ) → (A, σ)
is defined as (U ⊗B V, f) with

f(u⊗ v, u′ ⊗ v′) = h(v, g(u, u′)v′).

If g is ε1-hermitian and h is ε2-hermitian, then f is ε1ε2-hermitian.

Note that the identity of (A, σ) in Brh(K, ι) is the diagonal form (A, ⟨1⟩σ).
It can be shown that all morphisms are invertible. Specifically, if (V, h) is a
morphism from (B, τ) to (A, σ), then we can define an A-B-bimodule V as
being V as a K-vector space, but with twisted action a · v · b = τ(b) · v · σ(a).
Then we have a natural ε(h)-hermitian form h on V over (B, τ) defined by
h(x, y)z = xh(y, z) for all x, y, z ∈ V , and the inverse of (V, h) in Brh(K) is
(V , ⟨ε(h)⟩h), which is ε(h)−1-hermitian.

The association (A, σ) 7→ SW •(A, σ) defines a functor from Brh(K, ι) to
the category of U(K, ι)-graded commutative monoids with lax morphisms.
Precisely, if ε ∈ U(K, ι) and (V, h) is an equivalence from (B, τ) to (A, σ),
composition with (V, h) induces an isomorphism SW ε(B, τ) → SW εε(h)(A, σ),
and therefore a (ε 7→ εε(h))-graded isomorphism SW •(B, τ)

∼→ SW •(A, σ).
Actually, both Brh(K, ι) and the category of U(K, ι)-graded commuta-

tive monoids are naturally symmetric monoidal categories, and SW • is a
symmetric monoidal functor. This is simply encoded by a natural map

SW ε(A, σ)⊗ SW ε′(B, τ) → SW εε′(A⊗K B, σ ⊗ τ)

which is just given by the tensor product of hermitian modules.
The general machinery of [10] then provides for each Azumaya algebra

with involution (A, σ) a commutative ΓN-graded semiring, where ΓN = N ×
U(K, ι):

ŜW
•
N(A, σ) =

⊕
(d,ε)∈ΓN

SW ε(A⊗d, σ⊗d) =
⊕
d∈N

SW •(A⊗d, σ⊗d) (5)

where by convention (A⊗0, σ⊗0) = (K, ι). This actually defines a functor from
Brh(K, ι) to ΓN-graded semirings with lax morphisms: for any ε ∈ U(K, ι),
let φε : ΓN → ΓN be the monoid morphism φε(d, ε

′) = (d, εdε′); then an
equivalence (V, h) from (B, τ) to (A, σ) induces a φε(h)-graded isomorphism
ŜW

•
N(B, τ) → ŜW

•
N(A, σ), which is the direct sum of the isomorphisms

SW •(B⊗d, τ⊗d)
∼→ SW •(A⊗d, σ⊗d) induced by (V ⊗d, h⊗d), for all d ∈ N.
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In Brh(K, ι), each (A, σ) has a "weak inverse", given by the conjugate
algebra (ιA, ισ). Here ιA is A as a ring, but with the K-algebra structure
given by K

ι−→ K → A (twisting the K-algebra structure by ι), and ισ is just
σ as a function (the notation is just here to keep track of twisting). Precisely,
there is a canonical Morita equivalence (A⊗K

ιA, σ⊗ ισ) → (K, ι), given by
(|A|σ, Tσ), where |A|σ is the left (A ⊗K

ιA)-module which is A as a vector
space, with "twisted" action

(a⊗ b) · x = axσ(b) (6)

and Tσ is the involution trace form

Tσ(x, y) = TrdA(σ(x)y). (7)

Again, the machinery of [10] then provides a commutative ΓZ-graded
semiring, where ΓZ = Z× U(K, ι):

ŜW
•
Z(A, σ) =

⊕
(d,ε)∈ΓZ

SW ε(A⊗d, σ⊗d) =
⊕
d∈Z

SW •(A⊗d, σ⊗d). (8)

where by convention (A⊗d, σ⊗d) = (ιA⊗d, ισ⊗d) when d < 0. Again this
is functorial in (A, σ), as an ε-hermitian equivalence induces a φε-graded
isomorphism of semirings, where φε : ΓZ → ΓZ extends the previous version
on ΓN: φε(d, ε

′) = εdε′, where this time d ∈ Z.
This can be seen as a gluing of ŜW

•
N(A, σ) and ŜW

•
N(

ιA, ισ) identifying
the two copies of SW •(K, ι) in each semiring. The non-trivial ingredient
is that one can multiply forms of positive and negative Z-degree, such that
those degrees cancel each other out. The most important example is that of
degrees 1 and −1, where the morphism

SW ε(A, σ)× SW ε′(ιA, ισ) → SW εε′(K, ι)

is induced by the equivalence (A⊗K
ιA, σ ⊗ ισ) → (K, ι) explained above.

Example 2.3. Let ⟨a⟩σ ∈ SW ε(A, σ) and ⟨b⟩ισ ∈ SW ε′(ιA, ισ). Note that
this means that, due to the twisting of (ιA, ισ), we have σ(b) = ι(ε′)b. Then

⟨a⟩σ · ⟨b⟩ισ = Tσ,a,b ∈ SW εε′(K, ι)

where Tσ,a,b : A× A → K is the εε′-hermitian form defined as

Tσ,a,b(x, y) = TrdA(σ(x)ayσ(b)).

In particular, ⟨1⟩σ · ⟨1⟩ισ = Tσ.
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Remark 2.4. If f : (B, τ) → (A, σ) is a morphism in Brh(K, ι), the induced
morphism f∗ : ŜW

•
Z(B, τ) → ŜW

•
Z(A, σ) is simply the identity of SW •(K, ι)

on the {0} × U(K, ι)-components.

Remark 2.5. The functoriality implies that the graded semiring ŜW
•
Z(A, σ)

only depends on the Brauer class of A, but noncanonically : if A and B are
Brauer-equivalent, then there exists a Morita equivalence between (A, σ) and
(B, τ) inducing an isomorphism on the graded Grothendieck-Witt semirings,
but there are several choices of such equivalences, which amount to a choice
of scaling.

When ι = IdK , something special happens, since (ιA, ισ) is nothing but
(A, σ). In that case, reflecting the fact that the Brauer class [A] ∈ Br(K) has
order 2, we get a canonical isomorphism (A, σ)⊗2 → (K, IdK) in Brh(K, ι).
Again, the machinery in [10] then defines a commutative Γ-graded semiring,
where Γ = Z/2Z× µ2(K):

S̃W
•
(A, σ) = SW •(K, Id)⊕ SW •(A, σ). (9)

We call this the mixed Grothendieck-Witt semiring. This is again functo-
rial in (A, σ), with induced morphisms being the identity on the component
SW •(K, Id).

Those three flavours of graded Grothendieck-Witt semirings S̃W
•
(A, σ),

ŜW
•
N(A, σ) and ŜW

•
Z(A, σ) are naturally related: we have an obvious com-

mutative triangle of commutative monoids

ΓN ΓZ

Γ

along which we get a lax morphism ŜW
•
N(A, σ) ↪→ ŜW

•
Z(A, σ) and, when

ι = IdK , a natural triangle

ŜW
•
N(A, σ) ŜW

•
Z(A, σ)

S̃W
•
(A, σ)

where the morphisms to S̃W
•
(A, σ) are contractions. The natural contrac-

tion ŜW
•
Z(A, σ) → S̃W

•
(A, σ) can be characterized by the fact that it iden-

tifies the two copies of SW •(A, σ) in ŜW
•
Z(A, σ) (those in degree 1 and −1).
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Example 2.6. By definition, in S̃W
•
(A, σ) we have ⟨1⟩2σ = Tσ ∈ SW (K).

Sending a (hermitian) module to its reduced dimension defines a monoid
morphism from SWε(A, σ) to N. They can be bundled together to define a
graded semiring morphism r̂dim : ŜW

•
Z(A, σ) → N[ΓZ] and a "total reduced

dimension" morphism rdim : ŜW
•
Z(A, σ) → N. When ι = IdK , we also get

r̃dim : S̃W
•
(A, σ) → N[Γ] and rdim : S̃W

•
(A, σ) → N.

By taking Grothendieck rings, we also obtain graded ring versions of
our semirings, namely ĜW

•
N(A, σ) and ĜW

•
Z(A, σ), and G̃W

•
(A, σ) when

ι = IdK , which are functorial in (A, σ), and satisfy an obvious natural
commutative triangle, and the morphisms ĜW

•
N(A, σ) → G̃W

•
(A, σ) and

ĜW
•
Z(A, σ) → G̃W

•
(A, σ) are contractions when they make sense.

Proposition 2.7. If (A, σ) = (K, ι), then we have canonical isomorphisms of
graded (semi)rings ŜW

•
Z(K, ι) ≃ SW •(K, ι)[Z], ĜW

•
Z(K, ι) ≃ GW •(K, ι)[Z].

When ι = IdK we also get S̃W
•
(K, Id) ≃ SW •(K, Id)[Z/2Z] and G̃W

•
(K, Id) ≃

GW •(K, Id)[Z/2Z].

Proof. This just follows from the elementary observation that (K, ι)⊗d ≃
(K, ι) for any d ∈ N, and also when d < 0 since ι is an isomorphism (ιK, ιι)

∼→
(K, ι). Checking that the correpsonding monoid isomorphism⊕

d∈Z

SW •(K⊗d, ι⊗d)
∼−→

⊕
d∈Z

SW •(K, ι)

is an isomorphism of graded semirings ŜW
•
Z(K, ι)

∼→ SW •(K, ι)[Z] is then a
simple check. The reasoning is the same for the other isomorphisms.

3 λ-operations on hermitian forms
The goal of this section is to endow our various semirings with appropriate
λ-structures. Our work in Section 1 will allow us to restrict our attention to
ŜW

•
N(A, σ), and then transfer the structure to the other semirings.

3.1 Alternating powers of a module

Let A be an Azumaya algebra over K. The first step is to associate to each A-
module V an A⊗d-module Altd(V ), such that we recover the construction of
the exterior power (or rather the altenating power, which makes no difference
in practice) in the split case. The natural context of the alternating power
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construction for vector spaces is that of Schur functors, but the development
of such a theory for modules over central simple algebras is beyond the scope
of this article, and will be addressed in future work.

It is still useful to view the exterior power construction as a consequence
of the structure of module over a symmetric group. Namely, if V is a K-
vector space, then V ⊗d is naturally a left K[Sd]-module, and Λd(V ) is the
quotient of V ⊗d by the subspace generated by the kernels of 1 − τ for all
transpositions τ ∈ Sd. Now if V is a right A-module, it is in particular a
K-vector space, so V ⊗d still has the left K[Sd]-module structure given by
the permutation of the d factors, but it is not the one we want to use, since
it is not compatible with the action of A⊗d on the right (to see how ill-suited
this action would be, consider that if V = A, the A⊗d-module generated by
the kernel of any 1− τ is the full V ⊗d, since it contains 1A ⊗ · · · ⊗ 1A).

Instead, recall from [12, 3.5] that for any Azumaya K-algebra B, the
Goldman element gB ∈ (B⊗KB)× is defined as the pre-image of the reduced
trace map TrdB : B → K ⊆ B under the canonical isomorphism of vector
spaces

B ⊗K B
∼−→ B ⊗K Bop ∼−→ EndK(B),

and from [12, 10.1] that sending a transposition (i, i+ 1) ∈ Sd to 1⊗ · · · ⊗
gB ⊗ · · · ⊗ 1 extends to a group morphism Sd → (B⊗d)×, and thus to a
K-algebra morphism

K[Sd] → B⊗d.

Now let again V be a (non-zero) right A-module, and let B = EndA(V ).
Then from the canonical algebra morphisms from K[Sd] to B⊗d and A⊗d, we
have a canonical structure of left K[Sd]-module on V ⊗d which commutes with
the action of A⊗d, and a canonical structure of right K[Sd]-module which
commutes with the action of B⊗d (in particular, those two actions commute
with one another). Those two actions are by default the ones we have in
mind when we work with V ⊗d; they may be called the Goldman action, as
opposed to the permutation action, if it is necessary to make the distinction
clear. When V = 0, EndA(V ) is not Azumaya, but we of course still have
(trivial) actions of K[Sd]. Note that both actions are compatible with scalar
extension, and the one on the left is compatible with Morita equivalence.
The connection between the Goldman and permutation action is given by:

Proposition 3.1. Let A be an Azumaya algebra over K, and let V be a right
A-module. Then for any v1, . . . , vd ∈ V and any π ∈ Sd:

π(v1 ⊗ · · · ⊗ vd)π
−1 = vπ−1(1) ⊗ · · · ⊗ vπ−1(d).

If A = K, the action of K[Sd] on V ⊗d on the right is trivial, and its action
on the left is the usual permutation action on the d factors.
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Proof. Let us set B = EndA(V ). By construction of the K[Sd]-module
structures, we can reduce to the case where d = 2 and π is the transposition,
and extending the scalars if necessary we may assume that A and B are split.

In this case we have A ≃ EndK(U), B ≃ EndK(W ), and V ≃ HomK(U,W )
with obvious actions from A and B. It is shown in [12] that the Goldman
element gA in A⊗K A ≃ EndK(U ⊗K U) is the switching map (and of course
likewise for gB). Therefore, if f1, f2 ∈ V and u1, u2 ∈ U :

(gB · f1 ⊗ f2)(u1 ⊗ u2) = gB(f1(u1)⊗ f2(u2))

= f2(u2)⊗ f1(u1)

= (f2 ⊗ f1)(gA(u1 ⊗ u2))

= (f2 ⊗ f1 · gA)(u1 ⊗ u2)

so indeed gB · f1 ⊗ f2 = f2 ⊗ f1 · gA.
The last statement is a direct consequence, taking into account that the

Goldman element of K is 1 ∈ K ⊗K = K.

For any finite set X, if SX is its symmetric group and Y ⊂ SX , we define
the alternating element

alt(Y ) =
∑
g∈Y

(−1)gg ∈ K[SX ], (10)

where (−1)g is the sign of the permutation g. When Y = SX we call

sX = alt(SX) =
∑
g∈SX

(−1)gg, (11)

the anti-symmetrizer element of X. In particular, this defines sd ∈ K[Sd].

Lemma 3.2. Let V be a right A-module, where A is an Azumaya K-algebra.
Let us identify elements of K[Sd] with the maps they induce on V ⊗d through
the left Goldman action. Then

ker(sd) =
∑
g∈Sd

ker(1 + (−1)gg)

and
Im(sd) =

⋂
g∈Sd

ker(1− (−1)gg).

Moreover, the equalities still hold if we restrict g to a generating set of Sd.
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Proof. In both cases, the equality can be checked after extending the scalars
to a splitting field, and then by Morita equivalence it can be reduced to
A = K, that is to the case of vector spaces, where it amounts to simple
combinatorics on a basis, which we spell out explicitly.

Choose a basis (ei)1⩽i⩽r of V . For any x ∈ {1, . . . , r}d, we write ex for the
corresponding basis element of V ⊗d, and for any I ⊆ {1, . . . , r} of size d, we
define eI as eI where I consists of the elements of I in increasing order. Then
each x either has (at least) two equal components, or has the form gI for a
unique I and a unique g ∈ Sd with support in I. In the first case, sdex = 0,
and in the second case sdex = (−1)gsdeI .

Therefore it is easy to see that the kernel of sd is generated by the ex
where x has at least two equal components (in which case it is in the kernel
of 1 − g for some transposition g), and by the ex − (−1)gex where x has
distinct components, which is in the image of 1 − (−1)gg, so in the kernel
of 1 + (−1)gg. This shows that ker(sd) ⊆

∑
g ker(1 + (−1)gg). The reverse

inclusion can be seen from sd(1 + (−1)gg) = 2sd, so since the characteristic
of K is not 2, ker(1 + (−1)gg) ⊆ ker(sd).

Note that if g = g1 · · · gr where the gi are in some generating set S, then

ex − (−1)gegx = (ex + egrx)− (egrx + egr−1grx) + · · · − (−1)g(eg2···grx + egx)

so actually ker(sd) =
∑

g∈S ker(1 + (−1)gg).
It also follows from our earlier computations that the sdeI form a basis of

the image of sd. Let v =
∑

axex ∈
⋂

g ker(1−(−1)gg), and let x ∈ {1, . . . , r}d.
If x has at least two equal components then ax = 0 because there is a
transposition g such that gx = x so ax = −ax (and we assumed that the
characteristic of K is not 2). And if x has distinct components, we have
x = gI for some subset I, and ax = (−1)gaI . All in all, this means that
v =

∑
I aIsdeI , so

⋂
g ker(1 − (−1)gg) ⊆ Im(sd). The reverse inclusion is

clear since (1− (−1)gg)sd = 0. Finally, note that if we have gv = (−1)gv for
all g in some generating set, then it is true for any g.

This lemma shows in particular that, given the classical definition of
exterior powers, when V is a vector space (so A = K) we have a canonical
identification sdV ≃ Λd(V ), with sd(v1⊗· · ·⊗vd) corresponding to v1∧· · ·∧vd
(but this is only valid in characteristic different from 2, which is why we avoid
the term "exterior power" for our construction). This motivates the following
definition of alternating powers of a module:

Definition 3.3. Let A be an Azumaya algebra over K, let V be a right
A-module, and let d ∈ N. We set

Altd(V ) = sdV
⊗d ⊆ V ⊗d
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as a right A⊗d-module, with in particular Alt0(V ) = K and Alt1(V ) = V .

Remark 3.4. If we wanted to define an analogue of exterior powers that is
also valid in characteristic 2, we could define Extd(V ) as the quotient of V ⊗d

by the A⊗d-submodule generated by the ker(1 − (−1)gg) for g ∈ Sd. But
this is not as convenient for our purposes.

Proposition 3.5. Let A be an Azumaya algebra over K, let V be a right
A-module, and let d ∈ N. Then

rdimA⊗d(Altd(V )) =

(
rdimA(V )

d

)
.

In particular, if d > rdimA(V ) then Altd(V ) is the zero module.

Proof. Once again, it is enough to check this when A is split, and then by
Morita equivalence when A = K. But then this is the usual formula for the
dimension of Λd(V ).

Remark 3.6. In [12, §10.A], the algebra λd(A) is defined, using our notation,
as EndA⊗d(Altd(A)), where A is seen as a module over itself. When d ⩽
deg(A), λd(A) is an Azumaya algebra, but when d > deg(A), λd(A) is the
zero ring (we will try to avoid using this notation in that case).

In general, if B = EndA(V ) and d ⩽ rdim(V ), then EndA⊗d(Altd(V )) is
canonically isomorphic to λd(B).

3.2 The shuffle product

In this section, we give an appropriate generalization of the wedge product
on exterior powers of vector spaces, that is to say an associative product from
Altp(V )⊗K Altq(V ) to Altp+q(V ).

We start by recalling some elementary results about symmetric groups
and shuffles. Let us fix a finite totally ordered set X, and a partition X =∐

i Ii. Then recall that in SX we have the Young subgroup S(Ii), consisting
of the permutations stabilizing each Ii, and the set of shuffles Sh(Ii), which
are the permutations whose restriction to each Ii is an increasing function
Ii → X. The usefulness of shuffles is explained by the following lemma:

Lemma 3.7. Any element of SX can be written in a unique way as πσ, with
π ∈ Sh(Ii) and σ ∈ S(Ii).

Proof. Let τ ∈ SX . For any i, we can write Ii = {ai,1, . . . , ai,di} such that
ai,1 < · · · < ai,di , but also Ii = {bi,1, . . . , bi,di} such that τ(bi,1) < · · · <
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τ(bi,di). Then we define a permutation σi of Ii by σi(bi,j) = ai,j, and since we
do it for every i we get a permutation σ ∈ S(Ii).

Let π = τσ−1; by construction π ∈ Sh(Ii) since π(ai,j) = τ(bi,j) so
π(ai,1) < · · · < π(ai,di). The way we defined the σi and π makes it clear
that this is the only possible decomposition.

Shuffles also have a nice compatibility with refinements of partitions:

Lemma 3.8. Suppose that each Ii is itself partitioned as Ii =
∐

j Ji,j. Let
τ ∈ SX , and let τ = πσ be the decomposition given by lemma 3.7, with σ
corresponding to (σi)i ∈

∏
i SIi. Then τ is a (Ji,j)i,j-shuffle if and only if

each σi is a (Ji,j)j-shuffle.

Proof. Since π is increasing on each Ii, it is clear that τ is increasing on all
Ji,j if and only σi is.

We can record some very basic observations on the alt construction and
the shuffle group:

• If A,B,C ⊆ SX are such that any element of A can be written uniquely
as a product of an element of B and an element of C, then alt(A) =
alt(B) alt(C).

• If Ai ⊆ SIi for each i, then alt(
∏

iAi) =
⊗

i alt(Ai) where we identify∏
i SIi ≃ S(Ii) and K[S(Ii)] ≃

⊗
i K[SIi ].

If we now define the shuffle element sh(Ii) ∈ K[SX ] by

sh(Ii) = alt(Sh(Ii)) =
∑

π∈Sh(Ii)

(−1)ππ, (12)

we get the following consequences:

Corollary 3.9. It holds in K[SX ] that

sX = sh(Ii) · (sI1 ⊗ · · · ⊗ sIr)

and if each Ii is further partitioned as Ii =
∐

j Ji,j, that

sh(Ji,j)i,j = sh(Ii) · (sh(J1,j)j ⊗ · · · ⊗ sh(Jr,j)j).

Proof. Those equalities are corollaries of Lemma 3.7 and 3.8 respectively,
using the two observations above.

28



When X = {1, . . . , d} and the partition comes from a decomposition
d = d1 + · · · + dr, we simply write shd1,...,dr ∈ K[Sd] for the corresponding
shuffle element.

This leads to the following definition:

Definition 3.10. Let A be an Azumaya algebra over K, and let V be a right
A-module. The shuffle algebra of V is defined as the K-vector space

Sh(V ) =
⊕
d∈N

V ⊗d

(which is the same underlying space as the tensor algebra T (V ) over K) with
the product V ⊗p ⊗K V ⊗q → V ⊗p+q defined by

x#y = shp,q(x⊗ y), (13)

which we call the shuffle product.

The term algebra is fully justified by the following proposition:

Proposition 3.11. Let A be an Azumaya algebra over K, and let V be a
right A-module. The shuffle algebra Sh(V ) is an N-graded associative K-
algebra with unit 1 ∈ K = V ⊗0.

Furthermore,

Alt(V ) =

rdim(V )⊕
d=0

Altd(V ) ⊆ Sh(V )

is a subalgebra, and is actually the K-subalgebra generated by V = Alt1(V ).
Precisely, if x ∈ V ⊗p and y ∈ V ⊗q with p+ q = d, we have

(spx)#(sqy) = sd(x⊗ y)

and in particular if x1, . . . , xd ∈ V :

x1# · · ·#xd = sd(x1 ⊗ · · · ⊗ xd).

Proof. For the associativity, we make use of corollary 3.9: if p + q + r = d,
we have

shp,q,r = shp+q,r · (shp,q ⊗ 1) = shp,q+r · (1⊗ shq,r)

which by definition of the shuffle product implies that if x ∈ V ⊗p, y ∈ V ⊗q

and z ∈ V ⊗r, (x#y)#z = x#(y#z). The claims about the grading and the
unit are trivial.

The rest of the statement follows directly from the formula (spx)#(sqy) =
sd(x ⊗ y), which is a clear consequence of corollary 3.9 since it implies
shp,q(sp ⊗ sq) = sd.
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From what we already observed previously, when A = K the alternating
algebra Alt(V ) is canonically isomorphic to the exterior algebra Λ(V ) (again,
because we avoid characteristic 2), and the shuffle product corresponds to the
wedge product.

One of the main properties of the wedge product is its anti-commutativity,
and we do get some version of that property:

Proposition 3.12. Let A be an Azumaya algebra over K, and let V be a
right A-module. For any d ∈ N, x1, . . . , xd ∈ V and π ∈ Sd, we have

xπ(1)# . . .#xπ(d) = (−1)π(x1# . . .#xd)π.

Proof. From proposition 3.1 we see that xπ(1)# . . .#xπ(d) is sdπ−1(x1⊗ · · ·⊗
xd)π, so we can conclude using sdg = (−1)gsd for any g ∈ Sd.

We now establish the analogue of the well-known addition formula for
exterior powers of vector spaces, which computes the alternating powers of
a direct sum U ⊕ V in terms of those of U and V .

Proposition 3.13. Let A be an Azumaya algebra over K, and let U and
V be right A-modules. Then the subspaces Sh(U) and Sh(V ) of Sh(U ⊕ V )
are subalgebras for the shuffle product, and likewise Alt(U) and Alt(V ) are
subalgebras of Alt(U ⊕ V ).

This is an immediate consequence of the following lemma:

Lemma 3.14. Let A be an Azumaya algebra over K, and let U and V be right
A-modules. Then the restriction of the Goldman action of Sd on (U ⊕ V )⊗d

to U⊗d (resp. V ⊗d) is precisely the Goldman action on U⊗d (resp. V ⊗d).

Proof. We can reduce by scalar extension to the case where A is split, and by
Morita equivalence to A = K, in which case the result is about the classical
permutation actions, and is therefore clear.

We now give our result for computing the alternating powers of direct
sums:

Proposition 3.15. Let A be an Azumaya algebra over K, and let U and
V be right A-modules. Then for any d ∈ N the shuffle product induces an
isomorphism of A⊗d-modules :⊕

p+q=d

Altp(U)⊗K Altq(V )
∼−→ Altd(U ⊕ V ).
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Proof. Proposition 3.13 ensures that we can compute all shuffle products in
Alt(U ⊕ V ).

Using proposition 3.11, we easily establish that Altd(U ⊕ V ) is linearly
spanned by the elements of the type x1# · · ·#xd with xi in U or V . Now
using proposition 3.12, we can permute the xi so that x1, . . . , xp ∈ U and
xp+1, . . . , xd ∈ V , at the cost of multiplying on the right by some π ∈ Sd.
But any element of this type is obviously in the image of the map described
in the statement of the proposition, so this map is surjective. We may then
conclude that it is an isomorphism by checking the dimensions over K (using
proposition 3.5 for instance).

Note that in particular this defines a natural N-graded K-linear isomor-
phism between Alt(U) ⊗K Alt(V ) and Alt(U ⊗ V ), but it is not quite an
algebra isomorphism.

Remark 3.16. This construction of Altd(V ) defines a structure of N-graded
pre-λ-ring (and actually N-structured ring) on

⊕
d K0(A

⊗d). It is not very
impressive when we work over a field since this ring is just Z[N], but the
construction also works over an arbitrary base ring, and in that case this is
more meaningful.

3.3 Alternating powers of a ε-hermitian form

Now if V is a non-zero A-module equipped with a ε-hermitian form h with
respect to some involution σ on A, we want to endow Altd(V ) with an induced
form Altd(h) such that when A = K we recover the exterior power of the
hermitian form. This requires understanding the interaction between the
action of the symmetric group and the involutions on the algebras.

Recall that any group algebra K[G] has a canonical involution S given
by S : g 7→ g−1. As K carries the involution ι, we can twist S to Sι which
still acts as g 7→ g−1 on elements of G, but acts as ι on K.

If (R, σ) is any ring with involution, its isometry group Iso(R, σ) is the
set of x ∈ R such that xσ(x) = 1 (it is a subgroup of R×). In particular, G
is a subgroup of Iso(K[G], Sι). We can improve on this observation, with an
"involutory" version of the fact that G 7→ K[G] is left adjoint to R 7→ R×:

Proposition 3.17. Let AlgInv(K, ι) be the category of K-algebras endowed
with an involution acting by ι on K. The functor G 7→ (K[G], Sι) from the
category of groups to AlgInv(K, ι) is left adjoint to (R, σ) 7→ Iso(R, σ).

Proof. Let (R, σ) be in AlgInv(K, ι) and let G be a group. Let f : G →
Iso(R, σ). Then since Iso(R, σ) is a subgroup of R×, f extends uniquely to a
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K-algebra morphism K[G] → R. It is now clear by definition of Sι that f is
a morphism from (K[G], Sι) to (R, σ).

If we return to the Goldman morphism for Azumaya algebras:

Proposition 3.18. Let (A, σ) be an Azumaya algebra with involution over
(K, ι). Then for any d ∈ N the canonical K-algebra morphism K[Sd] → A⊗d

is a morphism of involutive algebras

(K[Sd], Sι) → (A⊗d, σ⊗d).

Equivalently, the canonical group morphism Sd → A⊗d actually takes
values in the isometry group Iso(A⊗d, σ⊗d).

Proof. The equivalence of the two formulations is clear given Proposition
3.17. We can then reduce to the case of d = 2 and a transposition, which
means we have to prove that the Goldman element is symmetric for σ2.
By definition of gA, this amounts to the fact that if gA =

∑
i ai ⊗ bi with

ai, bi ∈ A, then for any x ∈ A,
∑

i σ(ai)xσ(bi) = TrdA(x). But that ele-
ment is σ(

∑
i biσ(x)ai), which is TrdA(σ(x)) = TrdA(x) because

∑
i bi⊗ai =

gA(
∑

i ai ⊗ bi)gA = gA.

Corollary 3.19. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (V, h) be an ε-hermitian module over (A, σ). Then for any
d ∈ N, any x, y ∈ V ⊗d, and any θ ∈ K[Sd] we have

h⊗d(θ · x, y) = h⊗d(x, Sι(θ) · y).

In addition, Sι(sd) = sd, so we get h⊗d(x, sdy) = h⊗d(sdx, y).

Proof. Let B = EndA(V ) and τ = σh, and write θB ∈ B⊗d for the image
of θ by the canonical morphism. Then proposition 3.18 shows that τ⊗d(θB)
is the image of Sι(θ) in B⊗d, which shows the first formula by definition of
the adjoint involution. The fact that Sι(sd) = sd is clear since g 7→ g−1 is
bijective on Sd and preserves (−1)g.

This observation allows the following definition:

Definition 3.20. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (V, h) be an ε-hermitian module over (A, σ). We set:

Altd(h) : Altd(V )× Altd(V ) −→ A⊗d

(sdx, sdy) 7−→ h⊗d(sdx, y) = h⊗d(x, sdy).
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This is well-defined according to corollary 3.19, since h⊗d(sdx, y) only
depends on sdx and not the full x, and conversely h⊗d(x, sdy) only depends
on sdy.

The definition can be rephrased as

Altd(x1# . . .#xd, y1# . . .#yd) = h⊗d(x1# . . .#xd, y1 ⊗ · · · ⊗ yd). (14)

Proposition 3.21. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (V, h) be an ε-hermitian module over (A, σ). The application
Altd(h) is an εd-hermitian form over (A⊗d, σ⊗d).

Proof. We have for all x, y ∈ V ⊗d and all a, b ∈ A⊗d:

Altd(h)(sdx · a, sdy · b) = h⊗d(xa, sdyb)

= σ⊗d(a)h⊗d(x, sdy)b

= σ⊗d(a)Altd(h)(sdx, sdy)b

and

Altd(h)(sdy, sdx) = h⊗d(y, sdx)

= εdσ⊗d(h⊗d(sdx, y))

= εdσ⊗d(Altd(h)(sdx, sdy)).

Remark 3.22. Clearly this construction works in the following setting: if
(V, h) is an ε-hermitian space over (A, σ), with adjoint algebra with involution
(B, τ), and b ∈ Sym(B×, τ), then (b · x, b · y) 7→ h(x, b · y) is well-defined and
is an ε-hermitian form on bV .

Example 3.23. When A = K and h is a hermitian form on the vector space
V , then if x = u1 ⊗ · · · ⊗ ud and y = v1 ⊗ · · · ⊗ vd, we get

Altd(h)(sdx, sdy) =
∑
π∈Sd

(−1)π
∏
i

h(uπ−1(i), vi) = det(h(ui, vj))

so when we identify Altd(V ) and Λd(V ), Altd(h) does correspond to λd(h).

The following simple observation is extremely usful in applications:

Proposition 3.24. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (V, h) be an ε-hermitian module over (A, σ). For any d ∈ N
and any λ ∈ K×, we have

Altd(⟨λ⟩ιh) = ⟨λd⟩ιAltd(h).
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Proof. This follows the definition of from Altd(h) and the fact that (⟨λ⟩ιh)⊗d ≃
⟨λd⟩ιh⊗d.

Since Altd(V ) ⊂ V ⊗d, we can compare Altd(h) and h⊗d on Altd(V ).

Proposition 3.25. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (V, h) be an ε-hermitian module over (A, σ). For any d ∈ N,
we can restrict the εd-hermitian form h⊗d to Altd(V ) ⊆ V ⊗d, and we get

h⊗d

|Altd(V )
= ⟨d!⟩Altd(h).

Proof. Since sd is symmetric, we have h⊗d(sdx, sdy) = h⊗d(x, (sd)
2y). But it

is easy to see that s2d = (d!)sd, which concludes.

Note that this means that we could have simply defined Altd(h) in terms
of the restriction of h⊗d in characteristic 0, but in arbitrary characteristic
this does not work.

Example 3.26. This shows in any characteristic that Alt0(h) = ⟨1⟩ and
Alt1(h) = h.

We can then show the compatibility of this construction with the sum
formula:

Proposition 3.27. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let (U, h) and (V, h′) be ε-hermitian modules over (A, σ). The
module isomorphism in Proposition 3.15 induces an isometry⊕

p+q=d

Altp(h)⊗K Altq(h′)
∼−→ Altd(h ⊥ h′).

Proof. Let u, u′ ∈ U⊗p and v, v′ ∈ V ⊗q. Then

Altd(h ⊥ h′)((spu)#(sqv), (spu)#(sqv))

=Altd(h ⊥ h′)(sd(u⊗ v), sd(u
′ ⊗ v′))

=(h ⊥ h′)⊗d(sd(u⊗ v), u′ ⊗ v′)

=
∑
π∈Sd

(−1)π(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′),

where we used proposition 3.11 for the first equality. We want to show that
(h ⊥ h′)⊗d(π(u ⊗ v), u′ ⊗ v′) = 0 if π ̸∈ Sp,q. But if u = x1 ⊗ · · · ⊗ xp,
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u′ = y1 ⊗ · · · ⊗ yp, and v = xp+1 ⊗ · · · ⊗ xd, v′ = yp+1 ⊗ · · · ⊗ yd, then using
proposition 3.1:

(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′)

= (h ⊥ h′)⊗d((xπ−1(1) ⊗ · · · ⊗ xπ−1(d))π, (y1 ⊗ · · · ⊗ yd))

= π−1(h ⊥ h′)(xπ−1(1), y1)⊗ · · · ⊗ (h ⊥ h′)(xπ−1(d), yd)

which is indeed zero if π ̸∈ Sp,q since at least one of the (h ⊥ h′)(xπ−1(i), yi)
will be zero. Hence:

Altd(h ⊥ h′)((spu)#(sqv), (spu)#(sqv))

=
∑

π∈Sp,q

(−1)π(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′)

=
∑

π1∈Sp

∑
π2∈Sq

(−1)π1π2(h ⊥ h′)⊗d(π1u⊗ π2v), u
′ ⊗ v′)

= h(spu, u
′)⊗ h′(sqv, v

′).

Remark 3.28. If d ⩽ deg(A), then the hermitian form Altd(⟨1⟩σ) induces
an adjoint involution σ∧d on λd(A). This is essentially the same definition of
σ∧d as in [12] (and it is indeed the same involution). But defining it at the
level of hermitian forms instead of involutions allows to study the interplay
with the additive structure, and therefore the pre-λ-ring structure.

In general, if B = EndA(V ) and d ⩽ rdim(V ), then the adjoint involution
of Altd(h), defined on λd(B), is σ∧d

h .

3.4 The pre-λ-(semi)ring structures

We now show that the previous constructions do yield the expected structure
on our various semirings and rings.

Theorem 3.29. Let (A, σ) be an Azumaya algebra with involution over
(K, ι). Then the operations

Altd : SW ε(A⊗n, σ⊗n) → SW εd(A⊗nd, σ⊗nd)

for d ∈ N and ε ∈ U(K, ι) turn ŜW
•
N(A, σ) into a rigid ΓN-structured semir-

ing, with augmentation r̂dim.
Furthermore, (A, σ) 7→ ŜW

•
N(A, σ) is a functor from Brh(K, ι) to the

category of ΓN-structured semirings with lax morphisms.
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Proof. The fact that the Altd define a graded pre-λ-semiring structure follows
simply from Proposition 3.27 and Example 3.26.

It is easy to see that r̂dim is a graded semiring morphism (see also [10,
Prop 4.8]), so we need to check that it is a λ-morphism, which is exactly the
content of Proposition 3.5. To show that ŜW

•
N(A, σ) is rigid, note that by def-

inition of the reduced dimension, if h ∈ SW ε(A⊗n, σ⊗n) satisfies rdim(h) = 0,
then h = 0; moreover, the line elements in ŜW

•
N(A, σ) are exactly the 1-

dimensional hermitian forms in SW ε(A⊗n, σ⊗n) for the n such that A⊗n is
split, and clearly such elements are quasi-invertible: up to Morita equiva-
lence, multiplication by such an element amounts to multplication by some
⟨a⟩ι ∈ SW (K, ι), which clearly induces an isomorphism of Witt semigroups.

Only the functoriality is left to prove. Let f : (B, τ) → (A, σ) be a mor-
phism in Brh(K, ι). We already know that the induced map f∗ on the ŜW

•
N

is a graded semiring isomorphism, which preserves the reduced dimension;
it remains to check that it preserves the λ-operations. So let (V, h) be an
ε-hermitian module over (B⊗n, τ⊗n), and let d ∈ N. What we want to prove
is then

f⊗nd
∗ (Altd(h)) = Altd(f⊗n

∗ (h)). (15)
Replacing f by f⊗n if necessary, it is enough to treat the case n = 1.

Let (U, g) be the hermitian space over (A, σ) which defines to f . Then
the underlying module on the left-hand side of (15) is

(sdV
⊗d)⊗B⊗d U⊗d,

and on the right-hand side:

sd(V ⊗B U)⊗d.

There is an obvious bimodule isomorphism between the two, given by

(v1# . . .#vd)⊗ (u1 ⊗ · · · ⊗ ud) 7→ (v1 ⊗ u1)# . . .#(vd ⊗ ud),

and if we look at the definitions of g⊗d ◦Altd(h) and Altd(g ◦ h), we see that
we need to prove that for any ui, u

′
i ∈ U and vi, v

′
i ∈ V ,

g⊗d(u1 ⊗ · · · ⊗ ud, h
⊗d(v1 ⊗ · · · ⊗ vd, v

′
1# . . .#v′d)(u

′
1 ⊗ · · · ⊗ u′

d))

is equal to

(g ◦ h)⊗d((v1 ⊗ u1)⊗ · · · ⊗ (vd ⊗ ud), (v
′
1 ⊗ u′

1)# . . .#(v′d ⊗ u′
d)).

It is then a straightforward computation, using proposition 3.1, that both
expressions are equal to∑

π∈Sd

(−1)π

[⊗
i

g(ui, h(vi, v
′
π−1(i))u

′
π−1(i))

]
π.
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Corollary 3.30. The graded semirings ŜW
•
Z(A, σ), ĜW

•
N(A, σ), and ĜW

•
Z(A, σ)

are naturally ΓN- and ΓZ-structured semirings, such that ŜW
•
N(A, σ) (resp.

ŜW
•
Z(A, σ)) is the positive structure on ĜW

•
N(A, σ) (resp. ĜW

•
Z(A, σ)).

They define functors from Brh(K, ι) to the category of structured semirings
with lax morphisms, such that the square

ŜW
•
N(A, σ) ŜW

•
Z(A, σ)

ĜW
•
N(A, σ) ĜW

•
Z(A, σ)

is a commutative diagram of structured semirings, natural over Brh(K, ι).

Proof. Recall that ŜW
•
Z(A, σ) is simply a gluing of ŜW

•
N(A, σ) and ŜW

•
N(

ιA, ισ),
and the λ-operations therefore carry over to ŜW

•
Z(A, σ), and Proposition 1.5

shows that this also defines a graded pre-λ-ring structure on ŜW
•
Z(A, σ).

We can also use Proposition 1.5 to show that the canonical map r̂dim :

ŜW
•
Z(A, σ) → N[Z] is a λ-morphism.
We need to show that ŜW

•
Z(A, σ) is rigid. The fact that rdim(x) = 0

implies x = 0 is just as clear as for ŜW
•
N(A, σ). Let x ∈ SW ε(A⊗d, σ⊗d) be

homogeneous of λ-dimension 1. We may assume that d ⩾ 0, otherwise we ap-
ply the same reasoning to (ιA, ισ). It is not as obvious as for ŜW

•
N(A, σ) that

x is graded-invertible, as multiplication by x must also induce isomorphisms
for the components of negative Z-degree. But the fact that ŜW

•
N(A, σ) is rigid

shows that rdim(x) = 1 (Proposition 1.23) and therefore A⊗d is split. Choos-
ing an equivalence between (A⊗d, σ⊗d) and (K, ι), we see that x is the image
by a ring morphism ŜW

•
Z(K, ι) → ŜW

•
Z(A, σ) of some 1-dimensional element

y ∈ ŜW
•
Z(K, ι). Using Proposition 2.7, we see that y is actually invertible

in ŜW
•
Z(K, ι), because 1-dimensional elements in SW •(K, ι) are invertible.

This shows that x is invertible, and in particular graded-invertible.
The fact that this ΓZ-structured semiring is functorial over Brh(K, ι) fol-

lows directly from the corresponding statement for ŜW
•
N(A, σ) and ŜW

•
N(

ιA, ισ).
We get the structure on ĜW

•
N(A, σ) and ĜW

•
Z(A, σ) simply by apply-

ing Proposition 1.20, and functoriality follows immediately from the case of
ŜW

•
N(A, σ) and ŜW

•
Z(A, σ), and the functoriality of Grothendieck rings. The

statement about the commutative square is clear by construction.

Remark 3.31. Note that since ĜW
•
N(A, σ) is a graded pre-λ-ring, it is in

particular an ungraded pre-λ-ring, but ŜW
•
N(A, σ) is not a positive structure
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in this context, because the line elements are not invertible (only graded-
invertible). On the other hand, ŜW

•
Z(A, σ) is an ungraded positive structure

on ĜW
•
Z(A, σ), as the grading is done over a group, so graded-invertible

elements are invertible.

Corollary 3.32. If ι = IdK, S̃W
•
(A, σ) and G̃W

•
(A, σ) are naturally Γ-

structured semirings, where S̃W
•
(A, σ) is rigid and is the positive structure

on G̃W
•
(A, σ). Furthermore, they define functors from Brh(K, Id) to the

category of Γ-structured semirings with lax morphisms, such that the square

ŜW
•
Z(A, σ) S̃W

•
(A, σ)

ĜW
•
Z(A, σ) G̃W

•
(A, σ)

is a natural commutative diagram of structured semirings.

Proof. Since ŜW
•
N(A, σ) → S̃W

•
(A, σ) is a contraction, we can transfer

the structure to S̃W
•
(A, σ) as in Proposition 1.29, which shows that it

is rigid. We get the structure on G̃W
•
(A, σ) either from the contraction

ĜW
•
N(A, σ) → G̃W

•
(A, σ), or as the Grothendieck ring of S̃W

•
(A, σ). It is

straightfoward that these yield the same structure. The functoriality is easily
established as in Corollary 3.30, and the commutative square follows from
the definition of the structure.

If (V, h) is an ε-hermitian module over (A, σ), its image by the operation
λd in G̃W

•
(A, σ) will be denoted

(Λd(V ), λd(h)) ∈ SW εd(A⊗r, σ⊗r),

where r ∈ {0, 1} has the same parity as d.

Remark 3.33. Note that, unlike (Altd(V ),Altd(h)), which is a well-defined
hermitian module, only the isometry class of (Λd(V ), λd(h)) is well-defined,
because it is constructed from a Morita equivalence. This distinction is a rea-
son why it is often more convenient to prove things in ŜW

•
N(A, σ) first, where

we can work with actual modules, and transfer the results to G̃W
•
(A, σ) by

Morita equivalence. But in Section 4 we construct an explicit representative
(RAltd(V ),RAltd(h)) of the isometry class (Λd(V ), λd(h)).

Also note that the isomorphism class of Λd(V ) as a bimodule depends
on σ and not only V , but does not depend on h (see the constructions of
RAltd(V ) in Section 4). Furthermore, if d > rdimA(V ), then Λd(V ) = 0.
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Example 3.34. We know from Proposition 2.7 that as a ring G̃W
•
(K, Id) ≃

GW •(K, Id)[Z/2Z]. We also know from Proposition 1.8 that GW •(K, Id)[Z/2Z]
has a canonical Γ-graded pre-λ-ring structure, since by Example 1.13 GW •(K, Id)

is a µ2(K)-graded pre-λ-ring. Then actually G̃W (K, Id) ≃ GW±[Z/2Z] as
Γ-graded pre-λ-rings.

Remark 3.35. If f : (B, τ) → (A, σ) is a morphism in Brh(K), correspond-
ing to the ε-hermitian form h, then by definition f∗(⟨1⟩τ ) = h, and since f∗ is
compatible with the λ-operations, we have λd(h) = f∗(λ

d(⟨1⟩τ )). Thus to be
able to compute the exterior powers of any ε-hermitian form, we just need
to be able to do the computation in the special case of diagonal forms ⟨1⟩τ
for any involution τ .

4 Reduced alternating power and trace forms
Given a hermitian space (V, h) over (A, σ), we have a reasonably explicit
description of (Altd(V ),Altd(h)) in terms of the action of Sd on V ⊗d. When
σ is of the first kind, we are more interested on λd(h), which is defined from
Altd(h) through a Morita equivalence, and only exists as an isometry class,
not a concretely defined space (see Remark 3.33).

In this section, we assume always assume that σ is of the first kind (so ι =
IdK), and we will define explicit spaces called "reduced alternating powers"
which give representative of the isometry classes (Λd(V ), λd(h)), essentially
by going through the Morita equivalence that defines them. When d is even
this is a quadratic space, and when d is odd this is a hermitian space. Since
the behaviour is a little different, those two cases are treated separately,
though the basic idea is the same in both cases.

In the special case that (V, h) is (A, ⟨1⟩σ) we give a simplified construction,
which is actually universal for even powers, and which shows in particular
that if the characteristic of the base field is large enough, λ2d(h) can be
realized up to a scalar as a subform of an involution trace form (see Remark
4.16).

4.1 Reduced alternating powers of even degree

Reduced tensor powers of modules

Let (A, σ) be an Azumaya algebra with involution of the first kind over K.
Let V be a right A-module and let d ∈ N. We define

V [2d,σ] = V ⊗d ⊗A⊗d
σV ⊗d (16)
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where σV is the left A-module which is V as a vector space, with the action
a ·v = v ·σ(a). Note that (σV )⊗d and σ⊗d

(V ⊗d) are identical as A⊗d-modules,
so our notation can be taken to mean either one.

We call V [2d,σ] the 2dth reduced tensor power of V , which depends on σ.
When σ is understood from the context, we just write V [2d].

If x, y ∈ V ⊗d, we write x⊙ y for the element in V [2d] defined by x⊗ y ∈
V ⊗d⊗A⊗d

σV ⊗d. This is meant to distinguish this element from x⊗y ∈ V ⊗2d.
By construction, as a K-vector space V [2d] is a quotient of V ⊗2d, with the
quotient map given by x⊗ y 7→ x⊙ y.

Lemma 4.1. Let (A, σ) be an Azumaya algebra with involution over (K, Id),
and let V be a right A-module. There is a natural isomorphism of K-vector
spaces between V [2d,σ] and V ⊗2d ⊗A⊗2d |A⊗d|σ⊗d, given in both directions by
x⊙ y 7→ (x⊗ y)⊗ 1 and (x⊗ y)⊗ a 7→ (xa)⊙ y = x⊙ (yσ⊗d(a)).

Proof. It is a straightforward check that those maps are well-defined and
mutually inverse. For instance, if x, y ∈ V ⊗d and a ∈ A⊗d, (xa) ⊙ y and
x⊙ (yσ⊗d(a)) are respectively sent to

(xa⊗ y)⊗ 1 = ((x⊗ y) · (a⊗ 1))⊗ 1 = (x⊗ y)⊗ a

and

(x⊗ yσ⊗d(a))⊗ 1 = ((x⊗ y) · (1⊗ σ⊗d(a)))⊗ 1 = (x⊗ y)⊗ a

which are indeed equal, remembering the module structure of |A⊗d|σ⊗d .

Remark 4.2. We chose to define V [2d,σ] in such a way that by definition
V [2d,σ] = (V ⊗d)[2,σ

⊗d]. We could also have chosen V [2d,σ] = (V [2,σ⊗d])⊗d, in
which case in Lemma 4.1 we would have replaced |A⊗d|σ⊗d by |A|⊗d

σ . Since
those two A⊗2d-modules are isomorphic, this does not change anything, and
we found our convention more convenient overall.

Reduced tensor powers of hermitian forms

Now let us assume that V carries an ε-hermitian form h over (A, σ). We
define the symmetric bilinear form h[2d] on V [2d] by

h[2d](x⊙ y, x′ ⊙ y′) = TrdA⊗d(σ⊗d(h⊗d(x, x′))h⊗d(y, y′)) (17)

with x, x′, y, y′ ∈ V ⊗d.
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Proposition 4.3. Let (A, σ) be an Azumaya algebra with involution over
(K, Id), and let (V, h) be an ε-hermitian module over (A, σ). Under the
vector space isomorphism given in Lemma 4.1, the bilinear space (V [2d], h[2d])
is identified with the composition

(|A⊗d|σ⊗d , Tσ⊗d) ◦ (V ⊗2d, h⊗2d).

In particular, the isometry class of (V [2d], h[2d]), as an element of SW (K),
is the 2dth power in S̃W

•
(A, σ) of the isometry class of (V, h) in SW ε(A, σ).

Proof. By definition, the transfer of the composition Tσ⊗d ◦ h⊗2d to V [2d] is
given by

(x⊙ y, x′ ⊙ y′) 7→ Tσ⊗d(1, h⊗2d(x⊗ y, x′ ⊗ y′) · 1)
= Tσ⊗d(1, h⊗d(x, x′)σ⊗d(h⊗d(y, y′)))

= TrdA⊗d(σ⊗d(h⊗d(x, x′))h⊗d(y, y′)).

By construction of S̃W
•
(A, σ), the 2dth power of the isometry class of (V, h)

is precisely the isometry class of Tσ⊗d ◦ h⊗2d.

The canonical action of the symmetric group

We see from Lemma 4.1 that V [2d] is naturally a quotient of V ⊗2d as a vector
space, and that if B = EndA(V ) it can be seen as a quotient as left B⊗2d-
modules. In particular, it has a canonical structure of K[S2d]-module, and
we still refer to this as the Goldman action of K[S2d] (or S2d) on V [2d]. We
wish to describe the restriction of this action to two specific subgroups of
S2d.

First the group Sd ×Sd can be embedded in S2d by identifying it with
the Young subgroup Sd,d.

Lemma 4.4. Let (A, σ) be an Azumaya algebra with involution over (K, Id),
and let V be a right A-module. Given g, h ∈ Sd and x, y ∈ V ⊗d, the action
of Sd ×Sd on V [2d] is given by (g, h) · (x ⊙ y) = (gx) ⊙ (hy) using the left
Goldman action of Sd on V ⊗d.

Proof. This is straightforward since the B⊗2d-module structure of V [2d] is the
quotient of the B⊗2d-module structure of V ⊗2d, so for any a, b ∈ B⊗d and
x, y ∈ V ⊗d, we get (a⊗ b) · (x⊙ y) = (ax)⊙ (by). Since the action of S2d is
defined through B⊗2d, the lemma follows.
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Second, we can embed (Z/2Z)d in S2d by sending (xi)1⩽i⩽d ∈ (Z/2Z)d to
the permutation which exchanges i and i + d for all 1 ⩽ i ⩽ d with xi = 1,
and leaves the other elements unchanged. In other words, the ith generator
(0, . . . , 1, . . . , 0) is sent to the transposition (i, i+ d).

For any g ∈ S2d, we define its σ-signature ε(σ)g as ε(σ) if g is an odd
permutation, and 1 if g is even. So when σ is orthogonal ε(σ)g is always 1,
and when σ is symplectic this is the ordinary signature of g.

Note that the permutation action of S2d on V ⊗2d, unlike the Goldman
action, does not factor to V [2d]. For instance, if d = 2, the action of the
transposition (1, 2) does not give a well-defined map (x1 ⊗ x2)⊙ (x3 ⊗ x4) 7→
(x2 ⊗ x1)⊙ (x3 ⊗ x4). On the other hand, when we restrict to (Z/2Z)d:

Lemma 4.5. Let (A, σ) be an Azumaya algebra with involution over (K, Id),
and let V be a right A-module. Consider the permutation action of S2d on
V ⊗2d. The restriction of this action to the subgroup (Z/2Z)d ⊂ S2d factors
through the natural quotient map V ⊗2d → V [2d], and the resulting action on
V [2d] coincides with the Goldman action of this subgroup, up to multiplication
by the σ-signature.

Proof. We can easily reduce to the case where d = 1, and prove that the
action of gB ∈ B⊗2 on V ⊗A V is given by gB · (x⊙ y) = ε(σ)y ⊙ x.

We know from Proposition 3.1 that gB(x ⊗ y)gA = y ⊗ x. The image
of (x ⊗ y)gA ∈ V ⊗2 in V [2] is xb ⊙ y, where b = µ((Id⊗σ)(gA)), writing
µ : A⊗2 → A for the multiplication map. We just need to see that b = ε(σ).

This can be shown by reducing to the split case, or it follows from [12,
Exercise I.12], since b is by construction equal to gA · 1, using the twisted
action of A⊗2 on |A|σ.

Since Sd×Sd and (Z/2Z)d generate S2d, these lemmas fully characterize
the action of S2d.

Reduced alternating powers of a module

Since the reduced tensor power V [2d] corresponds to the A⊗2d-module V ⊗2d

through the Morita equivalence given by |A⊗d|σ⊗d , we logically define the
reduced alternating power as the corresponding subspace of V [2d].

Definition 4.6. If (A, σ) is an Azumaya algebra with involution of the first
kind over K and V is a right A-module, we define its 2dth reduced alternating
power

RAlt2d,σ(V ) = s2d · V [2d,σ] ⊂ V [2d,σ]

using the Goldman action of S2d on V [2d].
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Similarly to the reduced tensor powers, we usually drop the σ from
the notation and just write RAlt2d(V ). By definition, RAlt2d(V ) is the
image through the canonical quotient map V ⊗2d → V [2d] of the subspace
Alt2d(V ) ⊂ V ⊗2d.

For any 1 ⩽ i ⩽ d, let τi : V [2d] → V [2d] be the linear automorphism which
acts on x ⊙ y by exchanging the ith tensor factors of x and y. We say that
x ∈ V [2d] is an anti-mirror element if for any i ∈ {1, . . . , d}, τi(x) = −ε(σ)x,
and we write AM2d,σ(V ) for the subspace of anti-mirror elements.

Proposition 4.7. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K and V a right A-module. The subspace RAlt2d,σ(V ) of V [2d]

is the intersection of AM2d,σ(V ) with Altd(V )⊗A⊗d
σV ⊗d.

Proof. Consider the subgroups Sd ×Sd and (Z/2Z)d in S2d, as above. The
group S2d is generated by Sd × {1} and (Z/2Z)d, so according to Lemma
3.2, s2dV [2d] is the intersection of the ker(1 − (−1)gg) for g ∈ Sd × {1} and
g ∈ (Z/2Z)d.

Using Lemma 4.5, the intersection of the ker(1−(−1)gg) with g ∈ (Z/2Z)d
is exactly AM2d,σ(V ). And using Lemma 4.4, the action of Sd×{1} is simply
the Goldman action of Sd on the left factor of V [2d] = V ⊗d⊗A⊗d

σV ⊗d, so using
again Lemma 3.2, the intersection of the ker(1− (−1)gg) for g ∈ Sd ×{1} is
sdV

⊗d ⊗A⊗d
σV ⊗d, which gives the first equality.

Reduced alternating powers of a hermitian form

If we assume again that V carries an ε-hermitian form over (A, σ), we de-
fine the 2dth reduced alternating power of h as the symmetric bilinear form
defined on RAlt2d(V ) by

RAlt2d(h)(s2dx, s2dy) = h[2d](s2dx, y) = h[2d](x, s2dy). (18)

Proposition 4.8. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K, and let (V, h) be an ε-hermitian module over (A, σ). Un-
der the restriction of the vector space isomorphism given in Lemma 4.1, the
bilinear space (RAlt2d(V ),RAlt2d(h)) is identified with the composition

(|A|σ⊗d , Tσ⊗d) ◦ (Alt2d(V ),Alt2d(h)).

In particular, (Λ2d(V ), λ2d(h)) is the isometry class of (RAlt2d(V ),RAlt2d(h)).

Proof. We know from Proposition 4.3 that (V [2d], h[2d]) is identified with the
composition

(|A⊗d|σ⊗d , Tσ⊗d) ◦ (V ⊗2d, h⊗2d).
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Let b be the bilinear form on RAlt2d(V ) such that under this identification
(RAlt2d(V ), b) corresponds to

(|A⊗d|σ⊗d , Tσ⊗d) ◦ (RAlt2d(V ),Alt2d(h)).

Then considering that by definition

Alt2d(h)(s2dx, s2dy) = h⊗2d(s2dx, y) = h⊗2d(x, s2dy)

we must have b satisfing formula (18).

Corollary 4.9. The restriction of h[2d] to RAlt2d(V ) ⊂ V [2d] is ⟨(2d)!⟩RAlt2d(h).

Proof. This is a direct consequence of Proposition 3.25, since h[2d] and RAlt2d(h)
are obtained from h⊗2d and Alt2d(h) through the same Morita equivalence.

Reduced alternating powers of ⟨1⟩σ
The descriptions we gave can be somewhat simplified when (V, h) = (A, ⟨1⟩σ).

Lemma 4.10. Let (A, σ) be an Azumaya algebra with involution of the first
kind over K. The map x⊙y 7→ xσ(y) is an isomorphism of left A⊗2d-modules
from A[2d,σ] to |A⊗d|σ⊗d, with inverse x 7→ x⊙ 1 = 1⊙ σ⊗d(x).

Proof. This is just composing the isomorphism in Lemma 4.1 with the canon-
ical isomorphism between A⊗2d ⊗A⊗2d |A⊗d|σ⊗d and |A⊗d|σ⊗d .

So as a vector space A[2d,σ] can be identified with A⊗d, and the action
of S2d on A⊗d that we use is the one coming from the left A⊗2d-module
structure of |A⊗d|σ⊗d (the action twisted by σ⊗d, recall (6)).

Let us write RAlt2d(A, σ) for the subspace of A⊗d corresponding to RAlt2d,σ(A) ⊂
A[2d,σ], ie RAlt2d(A, σ) = s2dA

⊗d.
For any 1 ⩽ i ⩽ d, write σi = 1⊗ · · · ⊗ σ ⊗ · · · ⊗ 1, with the σ at the ith

spot, and define the subspace of totally σ-antisymmetric elements in A⊗d as

TA2d(A, σ) = {x ∈ A⊗d | ∀i ∈ {1, . . . , d}, σi(x) = −ε(σ)x}.

In particular, TA2d(A, σ) ⊂ Sym(−ε(σ))d(A⊗d, σ⊗d).

Proposition 4.11. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K. Under the identification A[2d,σ] ≃ A⊗d of Lemma 4.10,
the subspace AM2d,σ(A) of anti-mirror elements corresponds to the subspace
TA2d(A, σ) of totally σ-antisymmetric elements, and

RAlt2d(A, σ) = TA2d(A, σ) ∩ Altd(A) ⊂ A⊗d.
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Proof. This is a direct consequence of Proposition 4.7, as it is easy to see
by definition that under the identification x⊙ y 7→ xσ(y), τi corresponds to
σi.

Finally, we can identify the reduced tensor power and alternating power
of ⟨1⟩σ.

Proposition 4.12. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K. Under the identification A[2d,σ] ≃ A⊗d of Lemma 4.10, the
bilinear form ⟨1⟩[2d]σ corresponds to Tσ⊗d, and RAlt2d(⟨1⟩σ) to

(s2dx, s2dy) 7→ (−ε(σ))d TrdA⊗d((s2dx)y) = (−ε(σ))d TrdA⊗d(x(s2dy)).

Proof. The bilinear form corresponding to ⟨1⟩[2d]σ sends (x, y) to

⟨1⟩[2d]σ (x⊙ 1, y ⊙ 1) = TrdA⊗d(σ⊗d(⟨1⟩⊗2d
σ (x, y))⟨1⟩⊗2d

σ (1, 1))

= TrdA⊗d(xσ⊗d(y))

which is Tσ⊗d . Then according to (18) the form corresponding to RAlt2d(⟨1⟩σ)
sends (s2dx, s2dy) to

Tσ⊗d(s2dx, y) = TrdA⊗d(σ⊗d(s2dx)y)

= (−ε(σ))d TrdA⊗d((s2dx)y)

where we use that σ⊗d(s2dx) = (−ε(σ))ds2dx, since s2dx is in TA2d(A, σ).
The other equality follows since the bilinear form is symmetric.

Remark 4.13. We verified that our identifications did yield the expected
bilinear forms, but in itself the fact that ⟨1⟩2dσ is the isometry class of Tσ⊗d is
truly by definition of S̃W

•
(A, σ).

Corollary 4.14. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K. The restriction of Tσ⊗d to RAlt2d(A, σ) ⊂ A⊗d is isometric
to ⟨(2d)!⟩λ2d(⟨1⟩σ). Therefore, if char(K) ⩽ 2d then the restriction of Tσ⊗d

to RAlt2d(A, σ) is totally isotropic, and if char(K) > 2d then λ2d(⟨1⟩σ) is
isometric to ⟨(2d)!⟩ times the restriction of Tσ⊗d to Altd(A) ∩ TM2d(A, σ).

Proof. This is a direct consequence of Corollary 4.9.

Corollary 4.15. Let (A, σ) be an Azumaya algebra with involution of the
first kind over K. Then in SW (K):

λ2(⟨1⟩σ) = ⟨2⟩T−ε(σ)
σ .
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Remark 4.16. In fact, as we observed in Remark 3.35, for any (V, h) over
(A, σ), if B = EndA(V ) and τ = σh is the adjoint involution, then λ2d(h) =
λ2d(⟨1⟩τ ), so Proposition 4.12 is enough to compute any even λ-power. We
can even be more explicit: B⊗d ≃ EndA⊗d(V ⊗d), and the standard identi-
fication V ⊗d ⊗A⊗d

σ⊗d
V ⊗d ≃ B⊗d given in [12, §5.A] gives an identification

between V [2d] and B⊗d, which identifies RAlt2d(h) and RAlt2d(⟨1⟩τ ).
In particular, for any h, we can always realize λ2d(h) as a scaled subform

of some involution trace form, as long as the characteristic of the field is
strictly superior to 2d.

Remark 4.17. Our description of RAlt2(⟨1⟩σ) in Proposition 4.12 yields the
following alternative description of λ2(⟨1⟩σ). If σ is orthogonal, RAlt2(A, σ)
is the space of alternating elements of A in the sense of [12, §2.A], and
RAlt2(⟨1⟩σ) is

(x− σ(x), y − σ(y)) 7→ TrdA(x(y − σ(y))).

If σ is symplectic, RAlt2(A, σ) is the space of symmetrized elements as in
[12, §2.A], and RAlt2(⟨1⟩σ) is

(x+ σ(x), y + σ(y)) 7→ TrdA(x(y + σ(y))).

Those are the forms described in [12, Exercise 2.15], which also make sense
in characteristic 2.

4.2 Reduced alternating powers of odd degree

We now do a similar construction for odd λ-powers, heavily relying on the
even case. We give less details as we are mainly interested in even λ-powers
in applications.

If V is a right A-module and d ∈ N, we define

V [2d+1,σ] = V [2d,σ] ⊗K V. (19)

As before, we usually drop the σ from the notation. If B = EndA(V ), we
know V [2d] is a left B⊗2d-module, so V [2d+1] is naturally a B⊗2d+1-A-bimodule.
In particular, it is a left K[S2d+1]-module, and we may define

RAlt2d+1,σ(V ) = s2d+1V
[2d+1,σ] ⊂ V [2d+1,σ]. (20)

When V carries an ε-hermitian form we may define an ε-hermitian form
h[2d+1] on V [2d+1] by

h[2d+1] = h[2d] ⊗ h (21)
and an ε-hermitian form RAlt2d+1(h) on RAlt2d+1(V ) by

RAlt2d+1(h)(s2d+1x, s2d+1y) = h[2d+1](s2d+1x, y). (22)
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Proposition 4.18. Let (A, σ) be an Azumaya algebra with involution of
the first kind over K, and let (V, h) be an ε-hermitian module over (A, σ).
Then the isometry class of (V [2d+1], h[2d+1]) is the (2d+1)th power of (V, h) in
S̃W

•
(A, σ), and (Λ2d+1(V ), λ2d+1(h)) is the isometry class of (RAlt2d+1(V ),RAlt2d+1(h)).

Proof. By definition of the structure of S̃W
•
(A, σ), (V, h)2d+1 is the composi-

tion of (V ⊗2d+1, h⊗2d+1) and (|A⊗d|σ⊗d , Tσ⊗d)⊗K (|A|, ⟨1⟩σ). This composition
is the tensor power of

(|A⊗d|σ⊗d , Tσ⊗d) ◦ (V ⊗2d, h⊗2d)

which we know to be (V [2d], h[2d]) from Proposition 4.3 and of

(A, ⟨1⟩σ) ◦ (V, h)

which is canonically (V, h). So (V, h)2d+1 is the class of (V [2d+1], h[2d+1]).
The statement regarding λ2d+1(h) follows, using the connexion between

h⊗2d+1 and Alt2d+1(h), exactly as in the proof of Proposition 4.8.

Remark 4.19. Unlike the case of even λ-powers (see Remark 4.16), we can-
not compute λ2d+1(h) simply as λ2d+1(⟨1⟩τ ) where τ is the adjoint involution
of h. Rather, λ2d+1(h) ∈ SW ε(A, σ) is obtained from λ2d+1(⟨1⟩τ ) ∈ SW (B, τ)
using the Morita equivalence from (B, τ) to (A, σ) given precisely by (V, h).

5 The determinant of an involution
The determinant being one of the most basic and useful invariants of quadratic
forms, it makes sense that one would like to extend it to algebras with invo-
lutions and hermitian forms.

Let (A, σ) be an Azumaya algebra with involution over (K, ι), and let
(V, h) be an ε-hermitian module over (A, σ), of reduced dimension n ∈
N.Then applying Proposition 1.26 to ŜW

•
N(A, σ), we may define det(h) =

λn(h) ∈ ℓ(ŜW
•
N(A, σ)). In particular, we define the determinant of (A, σ) (or

just of σ) as

det(A, σ) = det(σ) = det(⟨1⟩σ) ∈ ℓ(ŜW
•
N(A, σ)). (23)

Now ℓ(ŜW
•
N(A, σ)) is a submonoid of ŜW

•
N(A, σ)

×, with a natural mor-
phism ∂ : ℓ(ŜW

•
N(A, σ)) → ΓN, which we compose with the natural projec-

tion ΓN → N to get ∂′ : ℓ(ŜW
•
N(A, σ)) → N. It is clear that SW •(A⊗d, σ⊗d)

contains elements of reduced dimension 1 only when A⊗d is split, and in
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that case a choice of Morita equivalence yields a (choice-dependent) iden-
tification between the set of those line elements with ℓ(SW •(K, ι)). Let
e ∈ N be the exponent of A. Then the image of ∂′ : ℓ(ŜW

•
N(A, σ)) → N

is eN, and if m ∈ N the fiber above em is in non-canonical bijection with
ℓ(SW •(K, ι)) ≃ K×/NK/k(K

×). Actually, we see that any choice of Morita
equivalence between (A⊗d, σ⊗d) and (K, ι) yields a monoid isomorphism be-
tween (∂′)−1(dN) and dN×K×/NK/k(K

×), so in particular a choice of equiv-
alence between (A⊗e, σ⊗e) and (K, ι) gives

ℓ(ŜW
•
N(A, σ)) ≈ eN×K×/NK/k(K

×).

Then det(h) is in the fiber above n ∈ eN, but this only non-canonically
identifies det(h) with a class in K×/NK/k(K

×). When n is a multiple of r =
deg(A) (so when h is isometric to a diagonal form, unless (A, σ) = (K, Id) and
h is anti-symmetric), we can do a little better. Indeed, there is a canonical
equivalence between (A⊗d, σ⊗d) and (K, ι), given by (Altr(A),Altr(⟨1⟩σ)).
This defines a canonical isomorphism

ℓ(ŜW
•
N(A, σ)) ⊃ (∂′)−1(rN) ≃ rN×K×/NK/k(K

×)

which sends det(σ) to (r, 1). In other words, we are saying that any element
of (∂′)−1(rm) for some m ∈ N (and in particular det(h) if n = rm) has the
form λ · det(σ)m for a unique class λ ∈ K×/NK/k(K

×) ≃ ℓ(SW •(K, ι)). We
can be more explicit when a diagonalization of h is given.

Lemma 5.1. Let A be an Azumaya algebra over K, of degree n. Then for
any a ∈ A×, we have sna

⊗n = NrdA(a)sn.

Proof. The equality can be checked after scalar extension, so it is enough to
prove this when A is split. In that case A ≃ EndK(U) with dim(U) = n, a
corresponds to some endomorphism f : U → U , and the formula amounts to
f(u1) ∧ · · · ∧ f(un) = det(f)(u1 ∧ · · · ∧ un) for all u1, . . . , un ∈ U .

Proposition 5.2. Let (A, σ) be an Azumaya algebra with involution over
(K, ι), and let a1, . . . , am ∈ Symε(A×, σ) for some ε ∈ U(K, ι). Then

det(⟨a1, . . . , am⟩σ) = ⟨
m∏
i=1

NrdA(ai)⟩ι det(σ)m.

Proof. Since det(h+h′) = det(h) det(h′), we can easily reduce to m = 1, and
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show Altn(⟨a⟩σ) = ⟨NrdA(a)⟩ιAltn(⟨1⟩σ). Let x, y ∈ A⊗n. Then

Altn(⟨a⟩σ)(snx, sny) = ⟨a⟩⊗n
σ (snx, y)

= σ⊗n(snx)a
⊗ny

= σ⊗n(x)sna
⊗ny

= NrdA(a)σ
⊗n(x)sny

= NrdA(a)⟨1⟩⊗n
σ (x, sny)

= NrdA(a)Alt
n(⟨1⟩σ)(snx, sny).

Tu summarize, det(h) is canonically an element of ℓ(ŜW
•
N(A, σ)), can be

identified with an element of K×/NK/k(K
×) only given a choice of Morita

equivalence, but if rdim(h) = m deg(A) we can relate det(h) and det(σ)m by
a class in K×/NK/k(K

×).

As usual, when ι = Idk, it is much more comfortable to work in S̃W
•
(A, σ),

and define det(h) and in particular det(σ) = det(⟨1⟩σ) as an element of
ℓ(S̃W

•
(A, σ)) (which is a group).

When A is not split, we easily see that ℓ(S̃W
•
(A, σ)) ≃ K×/(K×)2 since

there are no line elements in SW ε(A, σ). When A is split, the morphism
ℓ(S̃W

•
(A, σ))

∂−→ Γ → Z/2Z induces a canonical exact sequence

1 → K×/(K×)2 → ℓ(S̃W
•
(A, σ)) → Z/2Z → 0 (24)

which is split, but non-canonically so. Indeed, any choice of Morita equiva-
lence between (A, σ) and (K, Id) defines an isomorphism

ℓ(S̃W
•
(A, σ)) ≈ ℓ(S̃W

•
(K, Id)) ≃ Z/2Z×K×/(K×)2.

Any two such choices of equivalences differ by the multiplication by some
⟨λ⟩ with λ ∈ K×, which induces the automorphism of ℓ(S̃W

•
(K, Id)) which

corresponds to ([i], [a]) 7→ ([i], [λia]) with [i] ∈ Z/2Z and [a] ∈ K×/(K×)2

(in particular, it is the identity on the "even component" of ℓ(S̃W
•
(K, Id))).

When rdim(h) is even, det(h) is then canonically identified with a class
in K×/(K×)2. This applies in particular to det(σ) when deg(A) is even.

When rdim(h) is odd, necessarily A is split, and det(h) is in the odd com-
ponent of ℓ(S̃W

•
(A, σ)) which is non-canonically identified with K×/(K×)2.

This applies to det(σ) when deg(A) is odd; in that case, for any h with odd
reduced dimension, we can write det(h) = ⟨λ⟩ det(σ) and the square class of
λ is uniquely determined.
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Still when ι = Idk, let us compare these observations with the reference
[12]. In there det(σ) ∈ K×/(K×)2 is defined only when σ is orthognal and
deg(A) is even, and in that case it coincides with our definition. Indeed, we
can find a splitting extension L/K of A such that K×/(K×)2 → L×/(L×)2

is injective (for instance we can take L to be the function field of the Severi-
Brauer variety of A). Then we can choose a Morita equivalence (V, b) from
(AL, σL) to (L, Id), and det(σL) = det(b) both for our definition and that of
[12], and by injectivity this shows that both det(σ) are equal. The key point
of course is that this is independent of the choice of b, because any other
choice is isometric to ⟨λ⟩b for some λ ∈ L×, and det(⟨λ⟩b) = det(b) because
dim(V ) = deg(A) is even. With our point of view, we can say that det(σL)

is in the even component of ℓ(S̃W
•
(AL, σL)), so its image in ℓ(S̃W

•
(L, Id))

does not depend on the choice of Morita equivalence.
When σ is orthogonal but deg(A) is odd, [12] does not define det(σ),

because the previous trick does not work: det(⟨λ⟩b) = ⟨λ⟩ det(b) because
dim(V ) is odd, so this class does depend on the choice of b. In our lan-
guage, det(σL) is in the odd component of ℓ(S̃W

•
(AL, σL)), so its image in

ℓ(S̃W
•
(L, Id)) does depend on the choice of Morita equivalence. Our defini-

tion still provides a meaning for det(σ) in this case, but it is not a square
class. It can be related to one by choosing an equivalence between (A, σ) and
(K, Id), but the induced isomorphism ℓ(S̃W

•
(A, σ)) ≈ Z/2Z × K×/(K×)2

does depend on this choice (at least on the odd component). In general, if
(V, h) defines a Morita equivalence between (B, τ) and (A, σ), the induced
isomorphism ℓ(S̃W

•
(B, τ))

∼→ ℓ(S̃W
•
(A, σ)) sends det(τ) to det(σ), but the

group itself varies.
For a symplectic involution, the situation is simpler: det(σ) is simply

trivial (this can be seen using the splitting trick above for instance). This
is not suprising since there is no non-trivial cohomological invariant of de-
gree 1 for symplectic involutions (basically because symplectic groups are
connected). Instead one may find in the literature definitions of a "determi-
nant" of symplectic involutions as cohomological invariants of degree 3, see
[1] and [9].
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