
Even Stiefel-Whitney invariants for
anti-hermitian quaternionic forms

Nicolas Garrel

Introduction
In [3], Serre defines the notion of cohomological invariant of an algebraic group.
More generally, if K is a base field, Field/K is the category of fields over K, and
given functors F : Field/K → Set and A : Field/K → Ab, an invariant of F with
values in A is simply a natural transformation from F to A, where A is seen as
a set-valued invariant by forgetting the group structure. In other words, if α ∈
Inv(F,A) is such an invariant, then for any extension L/K and any x ∈ F (L),
it yields an element α(L) ∈ A(L), and this is compatible with scalar extensions
in the sense that if E/L is an over-extension then α(xE) = α(x)E ∈ A(E). We
always assume in this article that the base field has characteristic different from
2.

We speak of invariants of an algebraic group G over K when F (L) is the
cohomology set H1(L,G), which can be identified with the set of isomorphism
classes of GL-torsors, and we speak of cohomological invariants when A(L) =
Hd(L,C) where C is some Galois module defined over K (we then say that
the cohomological invariants have coefficients in C). We also consider Witt
invariants, which correspond to A(L) = W (L), the Witt group of L. When
G is a classical group, the corresponding functor F usually has some natural
algebraic reformulation in terms of bilinear forms or algebras with involution
(see [3] and [8]).

When G = O(A, σ) where (A, σ) is a central simple algebra with orthogonal
involution over K, then H1(L,G) can be identified with the set of isometry
classes of hermitian forms over (A, σ) of reduced dimension n = deg(A) ([8,
29.26]). Up to isomorphism, this functor only depends on n and the Brauer
class [A] ∈ Br(K). In particular, if G = O(V, q) where (V, q) is a non-degenerate
quadratic space of dimension n, this functor can be identified with Quadn, the
functor of isometry classes of n-dimensional non-degenerate quadratic forms. In
this case, Serre gave in [3] a complete description of Witt and cohomological
invariants: the Witt invariants are combinations of λ-operations λd, and the
cohomological invariants are combinations of Stiefel-Whitney invariants wd.

When A is not split, the cohomological invariants of O(A, σ) are only known
in cohomological degree up to 3 (see [8] for degree 1 and 2, and [9] for degree
3). When the index of A is 2, the problem amounts to finding cohomological
invariants of skew-hermitian forms of reduced dimension n (for some n) over
some quaternion algebra Q endowed with its canonical symplectic involution γ.
Some progress was made in [1], which uses descent methods from the generic
splitting field of Q (the function field of its Sever-Brauer variety, which is some-
what understood as it is the function field of a conic) to extend Stiefel-Whitney
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invariants to such hermitian forms. Unfortunately, this only yields invariants
in Hd(K,µ4)/[Q] · Hd−2(K,µ2) instead of Hd(K,µ2), and more importantly
the argument is flawed, and actually only works for an invariant which is well-
defined on similarity classes instead of isometry classes (what we call here an
even invariant), in particular for what we call here the even Stiefel-Whitney
invariants.

Our main result (Theorem 3.20) is that actually all cohomological invariants
of similarity classes of quadratic forms do extend to invariants of skew-hermitian
quaternionic forms (not with values in some quotient). Our method is to lift
cohomological invariants to Witt invariants, and use the fact that λ-operations
are also defined for ε-hermitian forms over algebras with involutions ([5]) to
extend those Witt invariants to such hermitian forms. We discuss this general
method in Section 3.1. In general it is not enough, as doing this yields constant
invariants of a degree lower than expected (if we start from an invariant of
degree d, then we generally find a constant invariant of degree d/r where r is
the index of the algebra with involution, so r = 2 for a quaternion algebra). We
develop in Section 1 a general framework to manage this kind of situations, and
in Section 3.4 we show how to clean up this constant obstruction to actually
extend the cohomological invariants to quaternionic forms.

1 Invariants in a filtered group
In this section we study a few generalities regarding invariants with values in
N-filtered groups. It would be possible to include more general filtering sets,
but at the cost of a few technicalities, and we only need the case of N for our
application.

1.1 Filtered and graded functors
To set up notations, if A is an N-filtered group we write A>n ⊂ A for the
corresponding subgroup for each n ∈ N, with A>n+1 ⊂ A>n as the notation
suggests (we also always assume that A>0 = A), and then the induced N-
graded group is gr(A) =

⊕
An with An = A>n/A>n+1. Any N-graded group

B =
⊕
Bn is also naturally filtered, with B>n =

⊕
m>nBm, and in that case

gr(B) ' B canonically.
We define AbN−filt to be the category of N-filtered abelian group, and AbN−grad

to be the category of N-graded abelian groups. Of course a morphism of filtered
groups is a group morphism f : A→ B such that f(A>n) ⊂ B>n for all n ∈ N.
The previous construction A 7→ gr(A) defines a functor gr : AbN−filt → AbN−grad
in a clear way, and the canonical filtering of a graded group defines a functor
AbN−grad → AbN−filt such that the composition is isomorphic to the identity of
AbN−grad.

Let F : Field/K → Set and A : Field/K → AbN−filt be two functors. There
are obvious subfunctors A>n ⊂ A for each n ∈ N. We write B = gr ◦A :
Field/K → AbN−grad. Since B(L) is by definition graded for each L/K, we
get groups Bn(L), which define functors Bn : Field/K → Ab; by definition,
for any extension L/K, we simply have B(L) =

⊕
n∈NBn(L), and Bn(L) =

A>n(L)/A>n+1(L). Composing B with the canonical AbN−grad → AbN−filt, we
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may also see B as a functor to filtered groups, which just amounts to taking
B>L =

⊕
Bm(L).

Example 1.1. If A(L) = W (L) is the Witt group of the field L (with the
obvious functor structure), endowed with its fundamental filtration W>n(L) =
In(L), then Bn(L) = Hn(L, µ2) is canonically the mod 2 Galois cohomology of
L (this is essentially a reformulation of the Milnor conjecture, see [7] for instance
for an exposition of this topic).

1.2 Invariants
Then we are interested in the group of invariants M = Inv(F,A) and N =
Inv(F,B) of F with values in A and B, that is natural transformations F →
A and F → B, where we see A and B as functors to Set by forgetting the
filtered/graded group structure. Clearly, M has a canonical structure of abelian
group given by pointwise addition, and even a structure of N-filtered group if
we define M>n to be the image of the natural map Inv(F,A>n) → Inv(F,A).
In fact, M>n is nothing but the subgroup of invariants α ∈M such that for all
L/K and all x ∈ F (L), αL(x) ∈ A>n(L) ⊂ A(L). The same analysis goes for
N , seeing B as a functor to AbN−filt.

Note that even though the filtered structure on B induces a filtered structure
on N , this does not work the same way with the graded structure: N is not
graded in a natural way. In fact, gr(N) is N =

⊕
n∈NNn, where of course

Nn = Inv(F,Hn), and the natural inclusion N ⊂ N is in general strict. The
invariants in N are locally of bounded degree: if α ∈ N then, for any x ∈ F (L),
there is m ∈ N depending on x such that αL(x) is a combination of elements
of Bn(L) for n 6 m. Then the invariants in N are those with globally bounded
degree. Also note that in general N is not the graded group induced by M ,
as the canonical map M>n → Nn has no reason to be surjective. (but its
kernel is indeed M>n+1, so there is an injective morphism of graded groups
gr(M)→ gr(N) = N). In fact:

Definition 1.2. We say that an invariant α ∈ Nn is liftable if it lies in the
image of M>n → Nn. The subgroup of liftable invariants is denoted by Ñn, and
we set Ñ =

⊕
n∈N Ñn ⊂ N .

Then by definition Ñn ' M>n/M>n+1, and Ñ is canonically the graded
group induced by M . To summarize:

Ñ = gr(M) ⊂ N = gr(N) ⊂ N.

Example 1.3. If A = W is the Witt group functor, and F = Quadr (so F (L)
is the set of isometry classes of non-degenerate quadratic forms of dimension r),
then all invariants are liftable (see Proposition 2.16). It is also the case when
F = Id (see [4]). This means that in those cases N = Ñ .

1.3 Visible and hidden degree
Given an invariant α ∈ M , there is a first naive way to use it to define an
invariant α ∈ N :
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Definition 1.4. Let α ∈M . We define its visible degree vis(α) ∈ N ∪ {∞} as

vis(α) = sup{n ∈ N |α ∈M>n} ∈ N ∪ {∞}

and we define α ∈ Nvis(α) as its image by the canonical map if vis(α) ∈ N, and
α = 0 ∈ N if vis(α) =∞.

Remark 1.5. Saying that vis(α) =∞ amounts to α(x) ∈
⋂
n∈NA>n(L) for all

L/K and x ∈ F (L). If for all L/K the filtration on A(L) is complete, meaning
that

⋂
n∈NA>n(L) = 0, then vis(α) = ∞ is equivalent to α = 0. This is the

case when A = W , by the Arason-Pfister Hauptsatz ([2, Cor 23.8]).

The issue is that it is entirely possible that some non-constant α ∈M (which,
as it is not constant, actually carries information), induces a constant invariant
α ∈ N . This is actually very simple to set up: take some α ∈M with vis(α) = n,
and consider β = α + u where u ∈ Apgqn−1(K) \ Apgqn(K), seen as a constant
invariant. Then even if α is an interesting invariant (and therefore β also carries
interesting information), we get vis(β) = n − 1 and β is just the constant
invariant u ∈ Nn−1.

We now explain how to avoid this situation, and always extract non-trivial
information in N from a non-constant invariant in M . For any n ∈ N, we can
wee the elements of A>n(K) as constant invariants in M>n, and thus A(K) is
a filtered subgroup of M . Likewise, B(K) is a graded subgroup of Ñ . Let us
write M̂>n = M>n/A>n(K) and N̂n = Ñn/Bn(K).

Lemma 1.6. The short exact sequence

0→M>n+1 →M>n → Ñn → 0

induces a short exact sequence

0→ M̂>n+1 → M̂>n → N̂n → 0.

Proof. The kernel of M>n+1 → M>n/A>n(K) consists of invariants in M>n+1

which are constant, therefore it is exactly A>n+1(K).
The kernel of M>n → Ñn/Bn(K) consists of invariants in M>n such that

they are constant modulo M>n+1, therefore it is A>n(K) + M>n+1. This es-
tablishes the exact sequence.

This means that if we write M̂ = M/A(K) and N̂ = N/B(K), then M̂ is
filtered and N̂ is graded, and N̂ = gr(M̂).

Definition 1.7. Let α ∈ M̂ . We define its hidden degree hid(α) ∈ N ∪ {∞} as

hid(α) = sup{n ∈ N |α ∈ M̂>n} ∈ N ∪ {∞}

and we define [α] ∈ N̂hid(α) as its image by the canonical map if hid(α) ∈ N,
and [α] = 0 ∈ N̂ if hid(α) =∞.

If α ∈M , then hid(α) and [α] are defined through the class of α in M̂ .

Proposition 1.8. Assume that for all L/K the filtration on A(L) is complete.
Then for any α ∈M , there is equivalence between:
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• α is constant,

• hid(α) =∞,

• [α] = 0.

If α is not constant, hid(α) is the only n ∈ N such that there exists u ∈ A(K)
with α − u ∈ M>n and the class of α − u in Nn is not constant. Precisely,
if m < n then there are u ∈ A(K) such that α − u ∈ M>m, but the class of
α − u in Nm is constant; and if m > n, then there are no u ∈ A(K) such that
α− u ∈M>m.

Proof. If α is constant, then its class in M̂ is zero, so hid(α) =∞, and [α] = 0.
Assume that α is not constant. Then there exists L/K and x, y ∈ F (L) such

that α(x) 6= α(y). By hypothesis, there is n such that α(x) − α(y) 6∈ A>n(L).
Then α 6∈M>n, and in particular the class of α in M̂ is not in M̂>n, so hid(α) 6
n is finite.

Let n = hid(α). By definition, the class of α in M̂ is in M̂>n but not in
M̂>n+1. This means that there is some u ∈ A(K) such that α− u ∈M>n, but
for any v ∈ A(K), α − v 6∈ M>n+1 + A>n(K). Taking v = u, we see that the
class of α− u in Nn is not in Bn(K).

Now let m 6= n. If m > n, we know that for any v ∈ A(K), α− v 6∈M>n+1,
so α− v 6∈M>m. And if m < n, and v ∈ A(K) is such that α− v ∈M>m, then
the class of α − u in Nm is 0, so the class of α − v in Nm is also the class of
v − u and therefore is constant.

In particular, since α−u is not constant, [α−u] = [α] ∈ Nn is not zero.

We can compare the visible and hidden degree:

Proposition 1.9. Assume again that for all L/K the filtration on A(L) is
complete. Let α ∈ M be non-zero. Then hid(α) > vis(α), with equality exactly
when α is not constant, and in that case [α] is the class of α in N̂ .

Proof. Clearly if α ∈M>n then its class in M̂ is in M̂>n, so hid(α) > vis(α).
If α is not constant, then n = vis(α) satisfies that α ∈M>n and its class in

Nn is not constant, so according to Proposition 1.8 we have n = hid(α).
If hid(α) = vis(α), then since α 6= 0 this value is finite; let n be this value.

Let u ∈ A(K) be such that α − u ∈ M>n and the class of α − u ∈ Nn is not
constant. Since n = vis(α), α ∈M>n, so u ∈ A>n(K). Then the class of α− u
in Nn is α − u, and since this is not constant, neither is α. Finally, [α] is then
the class of α− u in N̂n, which of course is the class of α.

2 Invariants of split hermitian forms
For any functor F : Field/K → Set, let us write IW (F ) and IC(F ) respectively
for the Witt and cohomological invariants of F , that is IW (F ) = Inv(F,W )
and IC(F ) = Inv(F,H∗(•, µ2). We also write IW>d(F ) = Inv(F, Id) and
ICd(F ) = Inv(F,Hd(•, µ2)) (recall from Section 1.2 that this defines a filtering
of IW (F ), but not exactly a grading of IC(F )).
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Let (A, σ) be an algebra with involution, and let Hermε
n(A, σ) : Field/K →

Set be the functor of isometry classes of ε−-hermitian forms of reduced dimen-
sion n over (A, σ). Ideally we would like to be able to describe IW (Hermε

n(A, σ))
and IC(Hermε

n(A, σ)). In this article we provide a certain program to tackle
this problem, and give significant advances when A is a quaternion algebra.

But first we take a look at the simplest case: when A is split. We then call ε-
hermitian forms over (A, σ) split hermitian forms. When the adjoint involutions
of ε-hermitian forms over (A, σ) are symplectic (which happens if σ is symplectic
and ε = 1, or if σ is orthogonal and ε = −1), then up to isometry there is only
one ε-hermitian form of reduced dimension n over (AL, σL) for all L/K, so the
only invariants are constant and the problem is very uninteresting (in contrast,
when A is not split, Hermε

n(A, σ) can be very interesting and complicated). So
for the rest of this section we always assume that either σ is orthognal and
ε = 1, or σ is symplectic and ε = −1.

In that case, choosing a hermitian Morita equivalence between (A, σ) and
(K, Id) gives a non-canonical isomorphism of funtors Hermε

n(A, σ) ∼= Quadn.
Choosing a different Morita equivalence yields the same isomorphism up to
multiplying all quadratic forms by 〈λ〉 for some (uniformly chosen) λ ∈ K×.
Therefore we get a canonical map

Hermε
n(A, σ)→ Quadn / ∼

where Quadn / ∼ is the functor of similarity classes of n-dimensional quadratic
forms. This factorizes as

Hermε
n(A, σ)→ Hermε

n(A, σ)/ ∼ ∼→ Quadn / ∼

where again we took similarity classes of hermitian forms.
The non-canonical correspondence with quadratic forms shows that the in-

variants of Hermε
n(A, σ) are the same as those of Quadn, which are well-understood,

but it turns out that because this correspondence is not canonical, we can’t hope
to extend all invariants of Quadn in the case where A is not split (there are pre-
cise ramification arguments that show that it’s not possible). On the other
hand, there is hope for the invariants of Quadn / ∼ (and for Witt invariants at
least we can show that they indeed extend).

We know how to describe invariants of Quadn / ∼, but the combinatorics
involved use the fact that forms in Quadn can be diagonalized, in other words
can be decomposed as sums of 1-dimensional forms. When the index of A is
m ∈ N∗, we can decompose forms in Hermε

n(A, σ) as sums of forms of reduced
dimension m: if r ∈ N∗ and X is a finite set with r elements, there is a natural
surjective map

(Hermε
m(A, σ))

X → Hermε
rm(A, σ)

given by (hi)i∈X 7→
∑
i∈X hi, which also induces

(Hermε
m(A, σ))

X
/ ∼→ Hermε

rm(A, σ)/ ∼

where on the left the quotient means that we identify a family (h1, . . . , hr) in
(Hermε

m(A, σ))
r

(L) with (h1, . . . , hr) if there exists a λ ∈ L× independent of i
such that h′i = 〈λ〉hi.

Thus when A is split we get a commutative diagram:
In this section we describe invariants of those functors, and we try to use a

combinatorics that does not use diagonalizations of the m-dimensional forms.
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2.1 A coordinate-free approach to Pfister forms
In this article we promote a slightly different (but strictly equivalent) way to
view and define Pfister forms, which amounts to doing linear algebra without
always choosing a basis.

Traditionally, given elements a1, . . . , an ∈ K×, the n-fold Pfister form 〈〈a1, . . . , an〉〉
is defined as

〈〈a1, . . . , an〉〉 = 〈1,−a1〉 · 〈1,−a2〉 · · · 〈1,−an〉.

The minus signs have no influence on the definition of the class of n-fold Pfister
forms (and in early texts they were not present), but they come very handy in
the notation when working with quaternion algebras or Galois cohomology.

As a general notation, if X is a set and (ai)i∈X is a family of elements of
K×, then for any finite subset I ⊂ X we write

〈ai〉i∈I =
∑
i∈I
〈ai〉

as well as
aI =

∏
i∈I

ai

and
〈〈ai〉〉i∈I = 〈〈ai1 , . . . , air 〉〉

if I = {i1, . . . , ir}. We use those notations more generally if the ai are in
K×/(K×).

Let X be a finite set, and (ai)i∈X be a family of elements in K×. By
definition,

〈〈ai〉〉i∈X = 〈(−1)|I|aI〉I∈P(X).

Then notice that in K×/(K×)2:

(−1)|I|aI · (−1)|J|aJ = (−1)|I∆J|aI∆J

where I∆J is the symmetric difference of I and J , which is nothing more than
the addition for the standard F2-vector space structure on P(X) (notably, it
is the addition when viewed in terms of characteristic functions X → {0, 1} '
Z/2Z).

This motivates the following:

Definition 2.1. Let V be a finite-dimensional F2-vector space, and let f : V →
K×/(K×)2 be a group morphism (equivalently, a linear map). For any affine
subspace W ⊂ V , we set

〈〈f |W 〉〉 = 〈f(x)〉x∈W ∈ GW (K).

Our analysis preceding the definition shows that 〈〈f |W 〉〉 is an n-fold general
Pfister form (recall that a general Pfister form is any form that can be written
〈a〉ϕ with ϕ a Pfister form), where n = dim(W ), and that it is a Pfister form if
W is a linear subspace. Explicitly, suppose W = w + W0 with W0 ⊂ a vector
subspace, (ei)i∈X is an F2-basis of W0, a ∈ K× is a representative of f(w), and
−ai a representative of f(ei) for each i ∈ X. Then

〈〈f |W 〉〉 = 〈a〉〈〈ai〉〉i∈X .

We actually need a slightly more general case:
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Definition 2.2. Let q be a quadratic form over K, with similarity factors group
G(q) ⊂ K×. Let V be a finite-dimensional F2-vector space, and let f : V →
K×/G(q) be a group morphism. Then for any affine subspace W ⊂ V we define

〈〈f |W 〉〉q =
∑
x∈W
〈f(x)〉q ∈ GW (K).

If q = 〈〈f ′|W ′〉〉 for some f ′ : V ′ → K×/(K×)2 as in Definition 2.1, we write
〈〈f |W ; f ′|W ′〉〉.

If a ≡ bmodG(q) with a, b ∈ K×, then by definition of G(q) we have 〈a〉q =
〈b〉q in GW (K), so 〈a〉q is well-defined for a ∈ K×/G(q), and thus 〈〈f |W 〉〉q is
well-defined. Note that when q = 〈1〉 we recover Definition 2.1.

Proposition 2.3. With the notations of Definition 2.2, if dim(W ) = n and q
is a general r-fold Pfister form, then 〈〈f |W 〉〉q is a general (r + n)-fold Pfister
form.

If moreover W is a linear subspace and q is a Pfister form, then 〈〈f |W 〉〉q is
a Pfister form.

Proof. Suppose q = 〈a〉ϕ for some a ∈ K× and ϕ an r-fold Pfister form, and
let us write W = w + W0 where W0 is a vector space. Then, recalling that
G(q) = G(ϕ):

〈〈f |W 〉〉q =
∑
x∈W0

〈f(w) · f(x)〉 · 〈a〉ϕ = 〈af(w)〉〈〈f |W0〉〉ϕ

so it is enough to prove the second statement, which follows from the same
analysis as we did after Definition 2.1.

Remark 2.4. The proof shows that for any q, there exists a (possibly general)
Pfister form ϕ such that 〈〈f |W 〉〉q = ϕq, but this ϕ is not well-defined and
depends on a choice of basis and a choice of representatives, while 〈〈f |W 〉〉q does
not depend on any choice.

Example 2.5. Let ϕ = 〈〈ai〉〉i∈X be an n-fold Pfister form. As we saw, we can
naturally write it as ϕ = 〈〈f |P(X)〉〉 by setting f({i}) = −ai. Then P0(X) is a
hyperplane of P(X), so we get an (|X|− 1)-fold Pfister form 〈〈f |P0(X)〉〉, which
we call the even part of ϕ. (Technically this does not depend simply on ϕ but
also on its representation as 〈〈ai〉〉i∈X .)

If X = {1, . . . , n}, we can write it as for instance 〈〈a1a2, a1a3, . . . , a1an〉〉, or
〈〈a1a2, a2a3, . . . , an−1an〉〉. The various ways to represent it as a Pfister form
with the usual notation, correspond to different choices of basis of P0(X), and
there is no obvious natural choice.

2.2 Even and odd invariants
We now describe a general framework to handle invariants of similarity classes.
It has some overlap with [4], but the formalism used there is a little heavy-
handed for our purposes, so we give a self-contained account.

Let F : Field/K → Set be a functor. The square classes functor G : L 7→
L×/(L×)2 is a group functor, and an G-action on F is just an action of G(L) on
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F (L) for every L, which is compatible in the obvious way with scalar extensions.
In that case we can consider the quotient functor F/G (such that (F/G)(L) =
F (L)/G(L) is the usual set-theoretic quotient for the given action).

Example 2.6. Or course our main examples are F = Quadm, or more generally
(Quadr)

r, as well as Hermε
n(A, σ), each time with the natural action through

multiplication by a 1-dimensional form. The quotients are then the correspond-
ing similarity classes functors.

For the rest of this section we fix some F : Field/K → Set with a G-action.

Lemma 2.7. The canonical map IW (F/G) → IW (F ) (resp. IC(F/G) →
IC(F )) is an injective morphism of W (K)-algebras (resp. h∗(K)-algebras),
and its image is the subalgebra of invariants α such that for all L/K, x ∈ F (L)
and λ ∈ G(L), we have α(λ · x) = α(x).

Proof. The fact that F → F/G is surjective by definition implies that IW (F/G)→
IW (F ) and IC(F/G) → IC(F ) are injective. The map on the level of invari-
ants induced by some F → F ′ is always an algebra morphism, as the algebra
structure is defined pointwise. Finally, α is in the image of the map if and only
if it factorizes through an invariant of F/G, which is equivalent to the condition
in the statement.

Definition 2.8. We say that α ∈ IW (F ) (resp. α ∈ IC(F )) is even if it is in
the image of IW (F/G) → IW (F ) (resp. IC(F/G) → IC(F )). The subalgebra
of even invariants is denoted IW (F )0 (resp. IC(F )0).

We say that α ∈ IW (F ) is odd if for all L/K, x ∈ F (L) and λ ∈ G(L),
we have α(λ · x) = 〈λ〉α(x)). We write IW (F )1 for the set of odd invariants in
IW (F ).

Example 2.9. When F = Quadn, Serre proved ([3]) that IW (F ) is a free
W (K)-module with basis (λd)06d6n. Then the even invariants are those that
are combinations of the λd with d even, and the odd invariants are those that
are combinations of the λd with d odd.

Note that there is no notion of odd cohomological invariant.

Proposition 2.10. IW (F )1 is a W (K)-submodule of IW (F ), and actually

IW (F ) = IW (F )0 ⊕ IW (F )1,

which turns IW (F ) into a Z/2Z-graded algebra over W (K).

Proof. The fact that IW (F )1 is a submodule is clear by definition. Let α ∈
IW (F ), and let us show that α = α0 +α1 for some uniquely defined α0 and α1,
respectively even and odd.

Consider some extension L/K and some x ∈ F (L). Then we can define a
Witt invariant of G over L by β : λ 7→ α(λ · xE) for all extensions E/L and
λ ∈ G(E). According to [3], there are uniquely defined elements u, v ∈ W (L)
such that β(λ) = u + 〈λ〉v for all λ ∈ G(E) for all E/L. Then we can define
α0(x) = u and α1(x) = v, and the uniqueness property of u and v shows that this
actually defines invariants α0, α1 ∈ IW (F ), and it is clear by construction that
they are respectively even and odd. Furthermore, the uniqueness property of u

9



and v shows that we must have α0(x) = u and α1(x) = v for any decomposition
α = α0 + α1.

The fact that this gives a Z/2Z-graded algebra just amounts to checking
that the product of two even/odd invariants is even/odd with the usual rules,
and that follows directly from the definition.

Proposition 2.11. For any α ∈ IF (F ) there is a unique α̃ ∈ IC(F )0 such that
for all L/K, x ∈ F (L) and λ ∈ G(L), we have

α(λ · x) = α(x) + (λ) ∪ α̃(x),

and α is even if and only if α̃ = 0.

Proof. Consider some extension L/K and some x ∈ F (L). Then we can define
a cohomological invariant of G over L by β : λ 7→ α(λ · xE) for all extensions
E/L and λ ∈ G(E). According to [3], there are uniquely defined elements
u, v ∈ h∗(L) such that β(λ) = u+ (λ) ∪ v for all λ ∈ G(E) for all E/L. Taking
λ = 1, we get u = α(x). Then we can define α̃(x) = v, and the uniqueness
property of u and v shows that this actually defines an invariant α̃ ∈ IC(F ),
which by definition satisfies the expected formula, and is the only possible one
by uniqueness of v.

It is clear by definition that α is even if and only if α̃ = 0. It just remains
to show that α̃ is always even. Now consider the following formula:

α((λµ) · x) = α(µ · x) + (λ) ∪ α̃(µ · x)

= α(x) + (λµ) ∪ α̃(x)

= α(x) + (λ) ∪ α̃(x) + (µ) ∪ α̃(x).

As this is valid for all λ, µ ∈ G(L) for all extensions L, we can take residues at
λ to get α̃(µ · x) = α̃(x), which shows that α̃ is even.

We now consider degrees of invariants, and the connexion between even Witt
and cohomological invariants:

Proposition 2.12. Let β ∈ IW>d(F ). Then its even and odd parts β0 and β1

are in IW>d−1(F ), and have the same class in ICd−1(F ). If β is even or odd,
then its class in ICd(F ) is even.

In fact, if α ∈ ICd(F ), then ãlpha ∈ ICd−1(F ), and if moreover α is liftable
and β ∈ IW>d(F ) is a lift of α, then α̃ is also liftable and β0, β1 ∈ IW>d−1(F )
are both lifts of α̃.

Proof. Let β ∈ IW>d(F ). It follows from the definition of even/odd invariants
that for any L/K, any x ∈ F (L) and λ ∈ G(L):

β(λ · x) = β(x)− 〈〈λ〉〉β1(x). (1)

In particular, this means that 〈〈λ〉〉β1(x) ∈ Id(L). Since this is true for all λ
over all extensions of L, we can take residues at λ to get that β1(x) ∈ Id−1(L)
(as residue maps satisfy ∂(Id) ⊂ Id−1, see [3]). This means that β1 ∈ IW>d−1

Now since β0 + β1 = β ∈ IW>d, we can conclude that β0 ≡ −β1 mod
IW>d(F ). As ICd(F ) is a 2-torsion group, this means that β0 ≡ β1 mod
IW>d(F ), and in particular β0 ∈ IW>d−1(F ) also.
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If β is even or odd, then for all L/K, x ∈ F (L) and λ ∈ G(L): β(λ·x) ≡ β(x)
mod Id+1(L). This is clear if β is even (we have equality), and when β is odd
we use that for any q ∈ Id(L), 〈λ〉q ≡ q mod Id+1(L).

If α ∈ ICd(F ), then α(λ · x) = α(x) + (λ) ∪ α̃(x) shows that (λ) ∪ α̃(x) is
in hd(L) for all L/K, x ∈ F (x) and λ ∈ G(L), and taking residues at λ shows
that α̃(x) is in hd−1(L).

Now if we assume that α is the class of β in ICd(F ), then formula (1) shows
that −β1 is a lift of α̃ (and therefore also β1). Since β0 and β1 have the same
class in ICd−1(F ), they are both lifts.

Remark 2.13. It would be tempting to guess that any liftable even invariant
in IC(F )0 has a lift in IW (F )0, but there is actually no guarantee that this
happens. On the other hand, the even invariants that are of the form α̃ for some
liftable α do indeed have an even lift, according to the proposition.

Even assuming that all invariants are liftable, it may very well happen that
not all even cohomological invariants have the form α̃ (a counter-example is
given by F = In with n > 2, see [4]).

On the other hand, if F = Quad2r for r ∈ N∗, then all even cohomological
invariants do have the form α̃ ([4]), and thus they all have a lift in IW (F )0.

2.3 Invariants of quadratic forms
Serre gave in [3] a complete description of the Witt and cohomological invariants
of Quadr. Precisely, IW (Quadr) is a free W (K)-module with basis (λd)06d6r,
where we recall that λd : GW (K)→ GW (K) is an operation such that

λd(〈ai〉i∈X) = 〈aI〉|I|=d.

These operations turn GW (K) into a pre-λ-ring. Let us give another basis of
IW (Quadr). In any pre-λ-ring R, one may define

P dr =

d∑
k=0

(−1)k
(
r − k
d− k

)
λk (2)

for all r ∈ N∗ and d ∈ {0, . . . , r}. Clearly, since they form a triangular family
with respect to the basis (λd), the family (P dr )06d6r is also a W (K)-basis of
IW (Quadr).

Then according to [4], a purely formal property of the P dr , valid in any
pre-λ-ring R, is that

P ds+t(q1 + q2) =
∑

d1+d2=d

P d1s (q1)P d2t (q2). (3)

for any q1, q2 ∈ R.

Proposition 2.14. Let X be a finite set with r elements, and let (ai)i∈X ∈
(K×)X be a family of elements in K×. Let us define f : P(X) → K×/(K×)2

by f({i}) = −ai. Then

P dr (〈ai〉i∈X) =
∑
|I|=d

〈〈f |P(I)〉〉.

In particular, P dr ∈ IW>d(Quadr).
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Proof. With a simple induction using (3), we see that

P dr (〈ai〉i∈X) =
∑
|I|=d

∏
i∈I

P 1
1 (〈ai〉),

and we conclude using that P 1
1 (〈a〉) = 〈〈a〉〉, as (2) tells us that P 1

1 = λ0 − λ1.
Since 〈〈f |P(I)〉〉 is a d-fold Pfister form, it follows that P dr has values in

Id.

When d = r, we get a single Pfister form:

P rr (〈ai〉i∈X) = 〈〈f |P(X)〉〉 = 〈〈ai〉〉i∈X .

Remark 2.15. The proposition shows that when d > r, P dr is zero on Quadr.

Now regarding cohomological invariants, [3] proves that IC(Quadr) is also a
free h∗(K)-module, with basis (wd)06d6r, where the wd are the Stiefel-Whitney
invariants:

wd(〈ai〉i∈X) =
∑
|I|=d

(ai)i∈I ∈ hd(K) (4)

where (ai)i∈I means the cup-product of all (ai) ∈ h1(K) for i ∈ I.
We record the following obvious but important observation:

Proposition 2.16. The invariant wd ∈ IC(Quadr) is the class in ICd(Quadr)
of P dr ∈ IW>d(Quadr). In particular, all invariants of IC(Quadr) are liftable.

Proof. Comparing (4) and Proposition 2.14, we may conclude using the fact
that if |I| = d, the class of 〈〈ai〉〉i∈I in hd(K) is exactly (ai)i∈I .

2.4 Invariants of families of quadratic forms
As we explained at the beginning of the section, we are also interested in invari-
ants of (Quadm)X where m ∈ N∗ and X is a finite set with r elements.

For any I-indexed family (αd)d∈I of invariants in IW (Quadm), and any
function γ : X → I, we may define αγ ∈ IW ((Quadm)X) by

αγ((qi)i∈X) =
∏
i∈X

αγ(i)(qi). (5)

Likewise, if the αd are in IC(Quadm), we get invariants αγ in IC((Quadm)X)
by taking cup-products.

For any f : X → N, we write |f | =
∑
i∈X γ(i). Then clearly, if αd ∈

IW>f(d)(Quadm) for some function f : I → N, then αγ ∈ IW>|f◦γ|((Quadm)X).
The same thing holds for degrees of cohomological invariants.

Also, if βd is the class of αd in ICf(d)(Quadm) for all d ∈ I, then βγ is the
class of αγ in IC |f◦γ|((Quadm)X).

Lemma 2.17. Let (αd)d∈I be a W (K)-basis of IW (Quadr), such that it re-
mains a basis when extending the scalars to any extension L/K. Then the αγ
with γ : X → I form a basis of IW ((Quadm)X). The same result holds for a
basis of IC(Quadr) which remains a basis over any extension.
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Proof. We proceed by induction on |X|; if |X| = 1 then this is clear. Suppose
X = {x} ∪ Y , and let α ∈ IW ((Quadm)X). For any L/K and q ∈ Quadm(L),
we can define an invariant βq ∈ IW ((Quadm)Y ) over L as follows: if E/L is an
extension and (qi)i∈Y ∈ Quadm(E)Y , then let qx = qE ∈ Quadm(E), and set
βq((qi)i∈Y ) = α((qi)i∈X .

Then βq decomposes uniquely as βq =
∑
γ aγ(q)αγ with γ : Y → I and

aγ(q) ∈W (L) (we can apply the induction hypothesis over the base field L since
the αd remain a basis over L and any extension). Then for each γ, q 7→ aγ(q)
defines an invariant in IW (Quadm) over K, which itself decomposes uniquely
as a combination of the αd with coefficients in W (K). Finally, this means that
α itself decomposes uniquely as a combination of the αγ with γ : X → I.

The proof is the same for cohomological invariants.

We then apply this construction to our basic invariants P dm and wd to get
invariants P γm ∈ IW>|γ|((Quadm)X) and wγ ∈ IC |γ|((Quadm)X) for any γ :
X → {0, . . . ,m}.

Explicitly:
P γm((qi)i∈X) =

∏
i∈X

P γ(i)
m (qi). (6)

and
wγ((qi)i∈X) =

⋃
i∈X

wγ(i)(qi). (7)

Proposition 2.18. Let I = {0, . . . ,m}. Then theW (K)-module IW ((Quadm)X)
is free with basis the P γm with γ : X → I. Likewise, IC((Quadm)X) is free with
basis the wγ , and wγ is the class of P γm in IC |γ|((Quadm)X). In particular, all
invariants in IC((Quadm)X) are liftable.

Proof. We can apply Lemma 2.17 since the P dm form a basis of invariants, and
that remains valid over any field extension (as we made no assumption on the
base field). The same applies to wγ .

Proposition 2.19. We have for any L/K and any (qi)i∈X ∈ (Quadm(L))X :

P drm(
∑
i∈X

qi) =
∑
|γ|=d

P γm((qi)i∈X)

wd(
∑
i∈X

qi) =
∑
|γ|=d

wγ((qi)i∈X).

In other words, the image of P drm through the canonical map IW (Quadrm) →
IW ((Quadm)X) is

∑
|γ|=d P

γ
m, and likewise the image of wd in IC((Quadm)X)

is
∑
|γ|=d wγ((qi)i∈X).

Proof. The computation of P dm(
∑
i∈X qi) is by induction on the formula (3),

and that of wd(
∑
i∈X qi) follows.

2.5 Invariants of similarity classes
We now turn to invariants of Quadn/ ∼ and (Quadm)X/ ∼. According to
Lemma 2.7, they are identified with the subalgebras of even invariants of Quadr
and (Quadm)X respectively.
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We also know that for Witt invariants, the even parts of a system of genera-
tors of IW (F ) form a system of generators of IW (F )0 for any functor F . This
leads to:

Definition 2.20. We define Qdn ∈ IW (Quad / ∼) as the even part of P dn ∈
IW (Quadn), and Qγm ∈ IW ((Quadm)X/ ∼) as the even part of P γm ∈ IW ((Quadm)X),
for any γ : X → {0, . . . ,m}.
Remark 2.21. Be aware that Qγm is not obtained from the Qdm through the
process described in (5).

Lemma 2.22. With the same hypotheses as in Lemma 2.17, let us furthermore
assume that there is a function f : I → Z/2Z such that αd ∈ IW (Quadm)f(d) for
all d ∈ I (so the αd form a graded basis for the Z/2Z-grading on IW (Quadm)).

For each γ : X → I we write π(γ) =
∑
i∈X f(γ(i)) ∈ Z/2Z. Then the αγ are

a graded basis of IW ((Quadm)X) in the sense that αγ ∈ IW ((Quadm)X)π(γ).
In particular, the αγ with π(γ) = 0 are a basis of IW ((Quadm)X)0.

Proof. We already know from Lemma 2.17 that the αγ form a basis, and the
parity of αγ is immediate from the fact that IW ((Quadm)X) is a Z/2Z-graded
algebra, and the definition of αγ as a product.

Proposition 2.23. We have Qdn ∈ IW>d−1(Quadn / ∼), and IW (Quadn / ∼)
is free with basis the Qdn with d ∈ {0, . . . , n} which is even. Moreover, all
invariants in IC(Quadn / ∼) are liftable.

Let I = {0, . . . ,m}. For any γ : X → I, Qγm ∈ IW>|γ|−1((Quadm)X/ ∼),
and IW ((Quadm)X/ ∼) is free with basis the Qγm with γ : X → I such that |γ|
is even.

Proof. The fact that Qdn is in IW>d−1 is a direct consequence of Proposition
2.12, as P dn ∈ IW>d. Since the λd are even/odd according to the parity of d,
the λd with d even form a basis of IW (Quadn / ∼). Now P dn is the sum of λd
plus combinations of λk with k < d, so when d is even λd is also the leading
term of Qdn, which means that the family (Qdn)d even is triangular in the basis
(λd)d even, so it is also a basis.

The fact that invariants in IC(Quadn / ∼) are liftable follows from the
discussion in Remark 2.13: all invariants in IC(Quadn) are liftable, so it is
enough to show that all even invariants in IC(Quadn) are of the form α̃ for
some α. This follows from explicit basis computations in [4]: there is a basis vd
of IC(Quadn) such that IC(Quadn / ∼) is the submodule generated by the vd
with d odd [4, Rem 9.13], and we have ṽd+1 = vd when d is odd [4, Prop 7.6].

To show the statement regarding the Qγn, we cannot directly apply Lemma
2.22 to αd = P dn , as they are neither even nor odd, but we rather apply it to
αd = λd. Then again, for the same reason as for the Qdn, the Qγn with |γ| even
form a triangular family in the basis (αγ)|γ| even.

Proposition 2.24. We have for any L/K and any (qi)i∈X ∈ (Quadm(L))X :

Qdrm(
∑
i∈X

qi) =
∑
|γ|=d

Qγm((qi)i∈X).

In other words, the image of Qdrm through the canonical map IW (Quadrm / ∼
)→ IW ((Quadm)X/ ∼) is

∑
|γ|=dQ

γ
m.

Proof. This is just taking the even part on both sides of Proposition 2.19.
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2.6 The splitting process
We now have basic Witt invariants P drm, Qdm, P γrm and Qγm of our respective
functors Quadrm, Quadrm / ∼, (Quadm)X and (Quadm)X/ ∼. We know that
they have values in Ik for certain k ∈ N (respectively, k = d, k = d− 1, k = |γ|
and k = |γ|−1), which means that their values can be written as sums of k-fold
Pfister forms in each case, and we would like to understand what these Pfister
forms look like given the combinatorics of our quadratic forms.

As we explained, the idea of studying invariants of (Quadm)X and (Quadm)X/ ∼
is that they are stepping stones to the case of hermitian forms over algebras
whose index divides m. Now suppose we are studying hermitian forms over
such algebras, but we want to understand how to specialize to algebras that
actually have a smaller index, say dividing m′ with m′ = rm. Then each m-
dimensional form can be further decomposed as a sum of m′-dimensional forms
indexed by some set Y with r elements. The case where m′ = 1 corresponds
to working with split algebras, and fully diagonalizing each quadratic form. In
general, the situation can be modeled with the canonical morphism

(Quadm)X×Y → (Quadm|Y |)
X

for some finite sets X and Y , which is defined by

(qi,j)i∈X,jinY 7→ (
∑
j∈Y

qi,j)i∈X .

This induces an injection

IW ((Quadm|Y |)
X)→ IW ((Quadm)X×Y ),

and one can ask how the basic invariant decompose. For any ω : X × Y → N,
we define ωX : X → N as

ωX(i) =
∑
j∈Y

ω(i, j).

It satisfies |ωX | = |ω|.

Proposition 2.25. Let γ : X → N. The image of P γm|Y | in IW ((Quadm)X×Y )
is ∑

ω:X×Y→N,ωX=γ

Pωm.

Proof. Let qi,j ∈ Quadm(L) for every (i, j) ∈ X × Y , for some L/K. Then

P γm|Y |((
∑
j∈Y

qi,j)i∈X) =
∏
i∈X

P γ(i)
m (

∑
j∈Y

qi,j)

=
∏
i∈X

∑
f :Y→N,|f |=γ(i)

P fm((qi,j)j∈Y )

=
∑

F :X→(Y→N),|F (i,−)|=γ(i)

∏
i∈X

∏
i∈X

PF (i)
m ((qi,j)j∈Y )

=
∑

ω:X×Y→N,ωX=γ

Pωn ((qi,j)(i,j)∈X×Y )

where we used Proposition 2.19 and the correspondence between functions X →
(Y → N) and X × Y → N.
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Note that only the γ with image in {0, . . . ,m|Y |} yield a non-zero P γm|Y |,
and likewise only the ω with image in {0, . . . ,m} give non-zero contribution in
the formula.

Corollary 2.26. Let γ : X → N. The image of Qγm|Y | in IW ((Quadm)X×Y / ∼)
is ∑

x:X×Y→N,ωX=γ

Qωm.

Proof. This is just taking the even part on both sides of Proposition 2.25.

When we take m = 1, which means that we fully diagonalize the forms,
there is a nice description of the Pfister forms that intervene. Note that in that
case, our functions γ : X → N that are involved in invariants of (Quad1)X only
take values in {0, 1}, so we can identify them with subsets I ⊂ X, using the
characteristic function χI of I. Note that |χI | = |I|.

Lemma 2.27. Let X be a finite set, and let I ⊂ X. Let (ai)i∈X ∈ (K×)X . We
define a morphism f : P(X)→ K×/(K×)2 by f({i}) = −ai. Then

PχI

1 ((〈ai〉)i∈X) = 〈〈f |P(I)〉〉
QχI

1 ((〈ai〉)i∈X) = 〈〈f |P0(I)〉〉.

Proof. The first equality simply comes from the fact that P 0
1 (〈a〉)) = 1 and

P 1
1 (〈a〉) = 〈〈a〉〉, so PχI

1 ((〈ai〉)i∈X) =
∏
i∈I〈〈ai〉〉.

For the second one, notice that if λ · f denotes the morphism P(X) →
K×/(K×)2 defined by (λ · f)({i}) = λf({i}), then (λ · f)(I) = f(I) if |I| is
even, and (λ · f)(I) = λf(I) if |I| is odd. So

PχI

1 ((〈λai〉)i∈X) = 〈〈f |P0(I)〉〉+ 〈λ〉〈〈f |P1(I)〉〉.

Then by definition of the even part of a Witt invariant we get the formula for
QχI

1 .

Now if we want to apply that to (Quad1)X×Y → (Quad|Y |)
X , we notice

that when ω : X × Y → N is χI for some I ⊂ X × Y , then ωX : X → N is the
function θI defined by

θI(i) = |π−1({i}) ∩ I|
where π : X × Y → X is the canonical projection. In particular, |θI | = |I|.

Proposition 2.28. Let (qi)i∈X ∈ (Quad|Y |(K))X , and let q =
∑
i∈X qi. For

each i ∈ X, we diagonalize qi as 〈ai,j〉j∈Y . Let us define f : P(X × Y ) →
K×/(K×)2 by f({(i, j)}) = −ai,j. Then:

P d|X||Y |(q) =
∑
|I|=d

〈〈f |P(I)〉〉

Qd|X||Y |(q) =
∑
|I|=d

〈〈f |P0(I)〉〉

P γ|Y |((qi)i∈X) =
∑
θI=γ

〈〈f |P(I)〉〉

Qγ|Y |((qi)i∈X) =
∑

thetaI=γ

〈〈f |P0(I)〉〉.

16



Proof. For the last two equations, we use Proposition 2.25 with m = 1, and the
fact that each function ω : X×Y → {0, 1} can be written as χI with I ⊂ I×Y ,
with ωX = γ equivalent to θI = γ. We conclude with each PχI

1 (resp. QχI

1 )
replaced by the formula given by Lemma 2.27.

The first two equations are special cases, using X ′ = {∗} and Y ′ = X × Y ,
and identifying a function γ : X ′ → N with its value d.

2.7 The case m = 2

In general, we would like to get a good combinatorial description of the Pfister
forms involved in P γm and Qγm, without diagonalizing the m-dimensional forms
(unlike in Proposition 2.28), but we do not yet have one to offer. On the other
hand, we give a satisfying answer when m = 2.

Let q ∈ Quad2(K). Instead of diagonalizing it, let us write it as

q = 〈t〉〈〈δ〉〉

where δ = det(q) ∈ K×/(K×)2 is well-defined, and t ∈ K× is only well-defined
modulo G(〈〈δ〉〉). Of course if q = 〈a, b〉 then δ = ab and we can take t = a or
t = b.

Then if (qi)i∈X ∈ (Quad2(K))X for some finite X, we can define δi ∈
K×/(K×)2 and ti ∈ K×/G(〈〈δi〉〉) for all i ∈ X. This extends naturally to

δ : P(X) −→ K×/(K×)2

{i} 7−→ −δi

and for any Y ⊂ X:

t : P(Y ) −→ K×/G(〈〈δ|P(Y )〉〉)
{i} 7−→ −ti

(note that since ti is well-defined modulo G(〈〈δi〉〉), for any I ⊂ Y we get
that tI is well-defined modulo G(〈〈δ|mathcalP (I)〉〉), and in particular modulo
G(〈〈δ|mathcalP (Y )〉〉)).

We see, given the definition, that for any I ⊂ X:∏
i∈I

qi = 〈(−1)|I|t(I)〉〈〈δ|P(I)〉〉. (8)

Definition 2.29. Let U, V ⊂ P(X) be affine subspaces with
−→
V ⊂

−→
U . Then we

define ΨV,U ,ΨV,U
0 ∈ IW ((Quad2)X) by

ΨV,U ((qi)i∈X) = 〈〈t|V ; δ|U〉〉

and
ΨV,U

0 = ΨV ∩P0(X),U

Furthermore, if A ⊂ X and J ⊂ X \A, we define VA,J = J +A and

ΨJ,A = ΨVJ,A,P(A∪J), ΨJ,A
0 = Ψ

VJ,A,P(A∪J)
0 .

The fact that those formulas indeed define invariants is clear since the mor-
phisms δ and t are canonically defined from the qi. The crucial observation is
that those invariants take values in general Pfister forms.
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Remark 2.30. It might happen that V ∩ P0(X) = ∅, in which case ΨV,U
0 = 0.

Otherwise, the direction of V ∩ P0(X) is
−→
V ∩ P0(X).

In particular, except when A = ∅ and |J | is odd, the direction of VJ,A∩P0(X)
is P0(A). When |J | is even, this affine space is actually J + P0(A), but when
|J | is odd there is no natural basepoint.

Lemma 2.31. Let U, V ⊂ P(X) be affine subspaces with
−→
V ⊂

−→
U . Then ΨV,U

0

is the even part of ΨV,U .
In particular, ΨV,U

0 ∈ IW dim(U)+dim(V )−1((Quad2)X/ ∼).

Proof. We see from the definition that if δ′ and t′ are the morphisms corre-
sponding to the family (q′i)i∈X where q′i = 〈λ〉qi, then δ′ = δ, while t′(I) = t(I)
if |I| is even and t′(I) = 〈λ〉t(I) if |I| is odd.

This implies that

ΨV,U ((〈λ〉qi)i∈X) = 〈〈t′|V ; δ′|U〉〉
= 〈〈t|V ∩ P0(X); δ|U〉〉+ 〈λ〉〈〈t|V ∩ P1(X); δ|U〉〉

which shows that ΨU,V
0 is the even part.

The part about degrees follows simply from Proposition 2.12.

We now see that those invariants with values in general Pfister forms actually
generate all invariants.

Proposition 2.32. Let γ : X → {0, 1, 2}, and let A = γ−1({2}) ⊂ X and
B = γ−1({2}). Then

P γ2 =
∑
J⊂B

2|B\J|ΨJ,AQγ2 =
∑
J⊂B

2|B\J|ΨJ,A
0 .

Proof. The second formula follows from the first be taking the even part on
both sides, so we only prove the first one.

Let (qi)i∈X ∈ (Quad2(K))X . First observe that from the definition (2) we
get

P 0
2 (qi) = 1

P 1
2 (qi) = 2− qi
P 2

2 (qi) = 〈〈δi〉〉 − qi.

Therefore:

P γ((qi)i∈X)

=
∏
i∈A

(〈〈δi〉〉 − qi)×
∏
i∈B

(2− qi)

=
∑

I⊂A,J⊂B
(−1)|I|〈(−1)|I|t(I)〉〈〈δ|P(I)〉〉 · 〈〈δ|P(A \ I)〉〉 × (−1)|J|〈(−1)|J|t(J)〉〈〈δ|P(J)〉〉 · 2|B\J|

=
∑

I⊂A,J⊂B
2|B\J|〈t(I ∪ J)〉〈〈δ|P(A ∪ J)〉〉

=
∑
J⊂B

2|B\J|〈〈t|J + P(A); δ|P(A ∪ J)〉〉.
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Let us now compare the descriptions of P γ2 given in Propositions 2.28 and
2.32. So we now allow ourselves to look into each qi: this gives us f : P(X×Y )→
K×/(K×)2 with some Y with 2 elements, and f encodes a diagonalization of
each qi. Recall that π : X × Y → X is the projection.

We choose a section s : X → X × Y of π. It induces a morphism s∗ :
P(X)→ P(X × Y ). We also define

∆ : P(X) −→ P(X × Y )
I 7−→ I × Y

which is F2-linear.
Note that

P(X × Y ) = s∗(P(X))⊕∆(P(X)) (9)

and
P0(X × Y ) = s∗(P0(X))⊕∆(P(X)).

Lemma 2.33. For all U, V ⊂ P(X) affine subspaces with
−→
V ⊂

−→
U , we have

〈〈t|V ; δ|U〉〉 = 〈〈f |s∗V + ∆(U)〉〉.

Proof. The section s gives us a way to choose representatives in K×/(K×)2 for
each t({i}): we take f({s(i)}). In practice, if qi = 〈ai, bi〉 for each I is the
diagonalization which defines f , then s picks between ai or bi for each i, and
those are possible representatives for ti.

Furthermore, δ({i}) = −aibi = f({i} × Y ) = f(∆({i})). This means that
δ = f ◦∆ and t = f ◦ s∗ (at least after taking the classes modulo G(〈〈δ|U〉〉)),
which gives the formula.

Therefore when we compare Propositions 2.28 and 2.32, we should have,
given γ : X → {0, 1, 2}, A = γ−1({2}) ⊂ X and B = γ−1({2}):∑

I⊂X×Y,θI=γ

〈〈f |P(I)〉〉 = 2|B\J|
∑
J⊂B
〈〈f |s∗(VJ,A) + ∆(P(A ∪ J))〉〉 (10)

∑
I⊂X×Y,θI=γ

〈〈f |P0(I)〉〉 = 2|B\J|
∑
J⊂B
〈〈f |s∗(VJ,A ∩ P0(X)) + ∆(P(A ∪ J))〉〉.

(11)

We only prove the first formula, the second one being similar and just ne-
cessiting taking extra care about which subsets have even cardinality.

Actually, at this point the result is pure combinatorics and has nothing to do
with quadratic forms anymore. Let us consider the group algebra Z[P(X×Y )].
For any subset U ⊂ P(X × Y ), we set σ(U) =

∑
x∈U x ∈ Z[P(X × Y )]. Then

formula (10) boils down to:

Proposition 2.34. Let γ : X → {0, 1, 2}, A = γ−1({2}) ⊂ X and B =
γ−1({2}). Then in Z[P(X × Y )], we have∑

I⊂X×Y,θI=γ

σ(P(I)) = 2|B\J|
∑
J⊂B

σ(s∗(VJ,A) + ∆(P(A ∪ J))).
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Proof. Given the definition of A, the subsets I ⊂ X × Y such that θI = γ are
exactly those that can be written I = (A× Y )

∐
I ′ with I ′ ⊂ B × Y such that

π induces a bijection I ′ → B. We then have P(I) = P(A× Y )⊕ P(I ′).
Now given J ⊂ B, we have

s∗(VJ) + ∆(P(A ∪ J)) = s(J) + s∗(P(A)) + ∆(P(A)) + ∆(P(J))

= s(J) +Delta(P(J)) + P(A× Y )

where we used (9).
So we are reduced to∑

I

σ(P(I)) =
∑
J⊂B

2|B\J|s(J)σ(∆(P(J))) (12)

where the left sum is over subsets I ⊂ B × Y such that π induces a bijection
I → B.

If we fully develop the left sum
∑
I σ(P(I)), the elements that appear are

the S ⊂ B×Y such that π induces an injection S → B, and each such S appears
as many times as there are ways to complete S in as I such that π induces a
bijection I → B. This means that for each element i ∈ B \π(S) there 2 possible
choices for the antecedent of i in I, so in total S appears 2B\π(S) times.

And actually one can see that s(J)σ(∆(P(J))) is exactly the sum of all
subsets S ⊂ B × Y such that π induces a bijection S → J . Indeed, any such S
will correspond in the sum given by σ to the subset T ⊂ J of elements i ∈ J
such that the antecedent of i in S is not s(i).

This establishes (12).

3 Invariants of quaternionic forms

3.1 Extending invariants to hermitian forms
Let (A, σ) be a central simple algebra with involution of the first kind over K,
and let ε be 1 if σ is orthogonal and −1 if σ is symplectic.

If (B, tau) is another such algebra with involution, with corresponding ε′ ∈
{±1}, and if [A] = [B] ∈ Br(K), then we can make a choice of hermitian
Morita equivalence between (A,σ) and (B, τ), which induces an isomorphism
Hermε

n(A, σ)→ Hermε′

n (B, τ). Another choice of equivalence changes this map
by a multiplicative scalar constant, and therefore there is a canonical morphism
Hermε

n(A, σ)→ Hermε′

n (B, τ)/ ∼ which actually gives a canonical isomorphism
Hermε

n(A, σ)(L)/ ∼→ Hermε′

n (B, τ)/ ∼.
In particular, for any splitting extension L/K of A, there is a canonical

isomorphism Hermε
n(AL, σL)/ ∼→ (Quadn)L/ ∼.

Definition 3.1. Let α ∈ IW (Quadn / ∼). Then an invariant α̂ ∈ IW (Hermε
n(A, σ)/ ∼

) is an extension of α if for any splitting extension L/K of A, α̂L corresponds
to αL through the canonical isomorphism.

The same definition applies for cohomological invariants.

Remark 3.2. We see that given the ambiguity of choice in hermitian Morita
equivalence, it is not clear what extending non-even invariants would even mean.
We could possibly define it as “for every splitting extension, there exists a Morita
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equivalence such that...”, but it is not very satisfying (and there is evidence that
this definition does not yield anything interesting anyway).

In [6], we define a commutative Z/2Z-graded ring

G̃W
ε
(A, σ) = GW (K)⊕GW ε(A, σ)

and in [5] we show that it is actually naturally a (graded) pre-λ-ring, with
operations λd : GW ε(A, σ) → GW ε(A, σ) for d odd, and λd : GW ε(A, σ) →
GW (K) for d even. Furthermore, any hermitian Morita equivalence between
(A, σ) and (B, τ) induces an isomorphism of graded pre-λ-rings G̃W

ε
(A, σ) →

G̃W
ε
(B, τ), which restricts to the identity on the neutral component GW (K),

and when A is split the operation λd : GW ε(A, σ) → GW (K) when d is even
corresponds to the usual λd : GW (K) → GW (K) through the isomorphism
GW ε(A, σ) ' GW (K) coming from any choice of Morita equivalence (the choice
does not matter since when d is even λd(〈a〉h) = λd(h) holds for any hermitian
form h).

Proposition 3.3. Any even Witt invariant α ∈ IW (Quadn / ∼) extends to
IW (Hermε

n(A, σ)/ ∼).

Proof. We know that the λd with d even form a basis of IW (Quadn / ∼). But
from what we explained just above, the λ-operation λd : GW ε(A, σ)→ GW (K)
defines an invariant IW (Hermε

n(A, σ)/ ∼) which extends λd ∈ IW (Quadn / ∼).
Therefore, all invariants extend.

Remark 3.4. This method not only shows that all invariants extend, it even
gives a somewhat canonical extension: if α =

∑
xdλ

d in IW (Quadn), then take
α̂ =

∑
xdλ

d in IW (Hermε
n(A, σ)). This is uniquely defined (but it does depend

on the choice of extending each λd by the corresponding operation on hermitian
forms, which is definitely a very natural choice, but still a choice).

When we extend an invariant in this manner, we use the same notation α
to denote this extension.

Now we ask the question for cohomological invariants: can every even coho-
mological invariants of quadratic forms be extended to IC(Hermε

n(A, σ))? We
give a positive answer when the index of A is 2.

3.2 Some Pfister forms related to quaternions
Let Q be a quaternion algebra over K, let X be a finite set, and let (hi)i∈X ∈
(Herm−1

2 (Q, γ))X be a family of anti-hermitian form over (Q, γ) of reduced
dimension 2. We want to extend to such a family the special invariants ΨJ,A

0

that we defined in Definition 2.29.
Remember that they depended on morphisms δ : P(X) → K×/(K×)2 and

t : P(X)→ K×/G(〈〈δ|P(X)〉〉), which extended the basic relation qi = 〈ti〉〈〈δi〉〉.
This relation does not make sense when replacing qi with a hermitian form hi,
but we can still define δi, as it is the discriminant of the form, which is also
well-defined for hermitian forms. Precisely, if hi = 〈zi〉γ for some invertible
pure quaternion zi, then we may take δi = z2

i (it does not depend on the choice
of zi). So our logical naive extension of 〈〈δ|P(I)〉〉 is:

21



Definition 3.5. For any subset I ⊂ X, we define

π(I) = 〈〈z2
i 〉〉i∈I .

Now since we only want even invariants, we only have to define our equivalent
of t on P0(X), wich means that we should not try to generalize ti but rather
t{i,j}, which is characterized by qiqj = 〈t{i,j}〉〈〈δi, δj〉〉.

Now the description of G̃W (Q, γ) in [6] tells us that

〈zi〉γ · 〈zj〉γ = 〈−TrdQ(zizj)〉ϕzi,zj

where ϕzi,zj is the unique 2-fold Pfister form whose class in h2(K) is (z2
i , z

2
j ) +

[Q]. This tells us that our first guess π(I) was not the correct one, and also
what our t{i,j} should be.

Lemma 3.6. Let z ∈ Q×0 . Then 〈〈z2〉〉nQ = 2nQ in W (K).

Proof. Since −z2 is the reduced norm of z, it is represented by nQ, and therefore
〈〈−z2〉〉nQ = 0 in W (K), which means that 〈z2〉nQ = −nQ and thus 〈〈z2〉〉nQ =
2nQ in W (K).

Proposition 3.7. If |I| > 2, then π(I) − 2|I|−2nQ is Witt-equivalent to a
(unique) |I|-fold Pfister form.

Proof. Assume that I = {1, . . . , n}. Then from the preceding lemma,

2n−2nQ = 〈〈z2
3 , . . . , z

2
n〉〉nQ

in W (K), which means that

π(I)− 2|I|−2nQ = 〈〈z2
3 , . . . , z

2
n〉〉(〈〈z2

1 , z
2
2〉〉 − nQ).

Now if we take z0 ∈ Q×0 which anti-commutes with z1:

〈〈z2
1 , z

2
2〉〉 − nQ = 〈〈z2

1 , z
2
2〉〉 − 〈〈z2

1 , z
2
0〉〉

= 〈〈z2
1 , z

2
0z

2
2〉〉 − 〈〈z2

1 , z
2
0 ,−z2

2〉〉

in W (K), and 〈〈z2
1 , z

2
0 ,−z2

2〉〉 is hyperbolic since −z2
2 is represented by nQ =

〈〈z2
1 , z

2
0〉〉. So in fact 〈〈z2

1 , z
2
2〉〉−nQ is Witt-equivalent to a 2-fold Pfister form. We

conclude with the fact that two n-fold Pfister forms which are Witt-equivalent
are actually isometric.

This allows the following definition:

Definition 3.8. For any I ⊂ X, we set ϕ(I) = π(I) if |I| > 1, and ϕ(I) is the
unique |I|-fold Pfister form which is Witt-equivalent to π(I)− 2|I|−2nQ.

Remark 3.9. When Q is split, then nQ is hyperbolic and therefore ϕ(I) = π(I).

Example 3.10. When Q is split, and each hi corresponds to some qi though
some Morita equivalence, then ϕ(I) = Ψ∅,I((qi)i∈X) (the choice of Morita equiv-
alence does not matter since this is an even invariant). So we can already extend
Ψ∅,I to IW ((Herm−1

2 (Q, γ))X), to an invariant that also takes values in Pfister
forms.

Of course π(I) would also define such an extension (but it is not the relevant
one for our purposes).
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We can record some basic facts about those forms:

Lemma 3.11. Let I, J ⊂ X. Then

π(I) · π(J) = 2|I∩J|π(I ∪ J)

π(I) · ϕ(J) =

{
2|I∩J|π(I ∪ J) if |J | > 1
2|I∩J|ϕ(I ∪ J) otherwise

ϕ(I) · ϕ(J) =

{
2|I∩J|π(I ∪ J) if |I|, |J | > 1
2|I∩J|ϕ(I ∪ J) otherwise.

Proof. The first formula is clear once we notice that 〈〈a, a〉〉 = 〈〈−1, a〉〉 = 2〈〈a〉〉.
The other two are also very simple using Lemma 3.6.

It is also useful to know more about the case where |I| = 2.

Proposition 3.12. Suppose I = {i, j}. Then the symmetric bilinear form

Q×Q −→ K
(z, z′) 7−→ TrdQ(zziz′zj)

is isometric to 〈TrdQ(zizj)〉ϕ(I).

Proof. This is the characterization of hj · hj given in [6].

3.3 The invariant ΨJ,A

We now generalize our morphism t:

Proposition 3.13. We keep the notations of Section 3.2. There is a unique
group morphism

t : P0(X)→ K×/G(ϕ(X))

such that for all i 6= j ∈ X we have t({i, j}) = −TrdQ(zizj).

Proof. The {i, j} are generators of P0(X) as a group (or equivalently as an F2-
vector space), so there can only be one morphism satisfying those conditions.

The only non-trivial thing to check is that t({i, j})t({i, k}) = t({j, k}), in
other words that T = −TrdQ(zizj) TrdQ(zi, zk) TrdQ(zj , zk) is represented by
the Pfister form ϕ({i, j, k}).

Using Lemma 3.14, we see that

T = −(TrdQ(zjzk))2 · z2
i + (−TrdQ(zjzk)) · TrdQ(zizjzizk).

Now it follows from Proposition 3.12 (using z1 = zj , z2 = zk and z = z′ = zi)
that −TrdQ(zjzk) · TrdQ(zizjzizk) is represented by ϕ({j, k}). It is also clear
that −(TrdQ(zjzk))2 · z2

i is represented by 〈−z2
i 〉, and thus by 〈−z2

i 〉ϕ({j, k}.
All in all, T is represented by 〈−z2

i 〉ϕ({j, k}) ⊥ ϕ({j, k}), which is 〈〈z2
i 〉〉ϕ({j, k}),

and therefore ϕ({i, j, k}) (see Lemma 3.11).

The following lemma is used in the proof of Proposition 3.13, but can also be
used in other contexts, so we record it here. It is a simple but powerful relation
satisfied by quaternions.
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Lemma 3.14. Let z1, z2, z3 ∈ Q×0 . Then

TrdQ(z1z2) TrdQ(z1z3) = z2
1 TrdQ(z2z3) + TrdQ(z1z2z1z3).

Proof. The basic idea is that if z, z′ ∈ Q×0 , then TrdQ(zz′) = zz′ + z′z. Then:

TrdQ(z1z2) TrdQ(z1z3) = TrdQ(z1z2)(z1z3 + z3z1)

= TrdQ(z1z2)z1z3 + z3z1 TrdQ(z1z2)

= (z1z2 + z2z1)z1z3 + z3z1(z1z2 + z2z1)

= z2
1(z2z3 + z3z2) + (z1z2z1z3 + z3z1z1z3)

= z2
1 TrdQ(z2z3) + TrdQ(z1z2z1z3).

Remark 3.15. We get an analog of equation (8): for any I ∈ P0(X),∏
i∈I

hi = 〈t(I)〉ϕ(I). (13)

Example 3.16. When Q is split and zi corresponds through some Morita
equivalence to qi = 〈ai, bi〉, then −TrdQ(zizj) = aibj +biaj . In the split case we
had naturally taken as repesentative for ti,j either aiaj , aibj , biaj or bibj , but
this is another possibility, more symmetrical: indeed, one can check by hand
that aiaj(aibj + biaj) is represented by 〈〈−aibi,−ajbj〉〉.

Definition 3.17. For any disjoint subsets A, J ⊂ X, we define ΨJ,A
0 ∈ IW0((Herm−1

2 (Q, γ))X)
by

ΨJ,A
0 ((hi)i∈X) = ψ(J ;A) = 〈〈t|WJ,A〉〉ϕ(A ∪ J)

where WJ,A = (J + P(A)) ∩ P0(X).

This form is well-defined since WJ,A is an affine subset of P0(A ∪ J). It is
clearly an invariant as everything is defined canonically. From everything we
said this far we deduce:

Proposition 3.18. The invariant ΨJ,A
0 ∈ IW0((Herm−1

2 (Q, γ))X) given in Def-
inition 3.17 is an extension of ΨJ,A

0 ∈ IW0((Quad2)X) defined in Definition
2.29, which also takes values in general (2|A|+ |J | − 1)-fold Pfister forms.

3.4 Extending cohomological invariants to quaternionic
forms

Proposition 3.19. Let d > 2 be even, with d 6 2|X|. The image of the extended
invariant Qdn ∈ IW (Herm−1

2|X|(Q, γ)) in IW ((Herm−1
2 (Q, γ))X) is given by

N(|X|, d)nQ +
∑

J,A⊂X

(
|X|+ |A| − k(J,A)

|X|+ |A| − d

)
2d−k(J,A)ΨJ,A

where N(|X|, d) ∈ N is divisible by 2d/2−2 and k(J,A) = 2|A|−|J |, and the sum
is over all J,A ⊂ X disjoint with 2|A| 6 d 6 |X|+ |A| and k(J,A) 6 d.
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Proof. Let us write h =
∑
i∈X〈zi〉γ . As we mentioned just before equation (3),

this equation holds in any pre-λ-ring, and in particular in G̃W (Q, γ), so

P dn(h) =
∑
|γ|=d

∏
i∈X

P
γ(i)
2 (〈zi〉γ).

Now by definition:

P 0
2 (〈zi〉γ) = 1,

P 1
2 (〈zi〉γ) = 2− 〈zi〉γ ,
P 2

2 (〈zi〉γ) = 〈〈z2
i 〉〉 − 〈zi〉γ .

Note that in G̃W (Q, γ) the Z/2Z-grading makes it even easier to pick out the
even and odd part: Qdn(h) is the even component of P dn(h), meaning the com-
ponent in GW (K).

So Qγ2(h) is the component in GW (K) of

P γ2 ((〈zi〉γ)i∈X) =
∏
i∈A

(〈〈z2
i 〉〉 − 〈zi〉γ) ·

∏
i∈B

(2− 〈zi〉γ)

where A = γ−1({2}) and B = γ−1({1}). When we develop this product, we
must choose for each i ∈ A ∪ B whether we choose the term in GW (K) or the
term in GW−1(Q, γ). We can describe our choice by the subsets I ⊂ A and
J ⊂ B of the indices for which we chose the odd component. We must have
|I|+ |J | even, so that the resulting product lands in GW (K). This gives:

Qγ2((〈zi〉γ)i∈X) =
∑

I∪J∈P0(A∪B)

2|B\J|π(A \ I)〈t(I ∪ J)〉ϕ(I ∪ J)

= 2|B|π(A) +
∑

I∪J∈P0(A∪B)\{∅}

2|B\J|〈t(I ∪ J)〉ϕ(A ∪ J)

= 2|A∪B|−2nQ +
∑

I∪J∈P0(A∪B)

2|B\J|〈t(I ∪ J)〉ϕ(A ∪ J)

= 2|A∪B|−2nQ +
∑
J⊂B

2|B\J|

 ∑
I⊂A,|I∪J| even

〈t(I ∪ J)〉

ϕ(A ∪ J)

= 2|A∪B|−2nQ +
∑
J⊂B

2|B\J|ψ0(J ;A).

Now we just have to count how many times nQ and each ψ(J ;A) appears when
we sum over all γ : X → N with |γ| = d. Note that |γ| = 2|A|+ |B|. Of course
the data of γ is equivalent to the data of A and B. So as for nQ, we see that it
appears ∑

A⊂X

(
|X| − |A|
d− 2|A|

)
2d−|A|−2

times, where the sum is over subsets A such that 2|A| 6 d 6 |X|+ |A|. We call
that number N(|X|, d), and we see that all 2-powers appearing in the sum are
with exponent d− |A| − 2 > d/2− 2.
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For each pair (J,A) of disjoint subsets of X, ψJ,A appears with factor
2|B\J| = 2d−k(J,A) for each overset B of J which is disjoint with A and with
2|A| + |B| = d. For this to exist we must have 2|A| 6 d 6 |X| + |A| and
k(J,A) 6 d, and in that case there are

(|X|+|A|−k(J,A)
|X|+|A|−d

)
possibilities for B (by

choosing B \ J in X \ (A ∪ J) with cardinal d− k(J,A)).

Theorem 3.20. Every even invariant α ∈ IC0(Quad2n) extends to an invariant
α̂ ∈ IC(Hermε

2n(A, σ)/ ∼).

Proof. We may assume that α ∈ ICm0 (Quad2n) According to Proposition 2.23,
α is liftable to some β ∈ IW>m

0 (Quad2n). Then write β =
∑
d adQ

d
n with

ad ∈ Im−d+1(K). We can then extend naturally β to hermitian forms, and then
set

b̂eta = β −
∑
d

adN(n, d)nQ

which according to Proposition 3.19 takes values in Im (indeed, it is a combina-
tion of invariants ad2d−k(J,A)ΨJ,A

0 and ΨJ,A
0 takes values in general (k(J,A)−1)-

fold Pfister forms). Since nQ = 0 ∈ W (K) when Q is split, the class of β̂ in
IC0(Hermε

2n(A, σ)) extends α.
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