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Introduction
In the seminal [2], Serre starts the study of cohomological invariants, in parti-
culiar of algebraic groups. Let k be a base field, which in this article we will
assume to be of characteristic not 2. Then if Field/k is the category of field
extensions of k (it is enough to consider finitely generated extensions, in case
one wants to work in an essentially small category), and F : Field/k → Set
and A : Field/k → Ab are functors, then an invariant of F with values in A is
simply a natural transformation from F to A (seen as a functor to Set). We
write Inv(F,A) for the set of such invariants; this is clearly an abelian group
for the pointwise addition coming from the abelian group structure of A(K) for
any extension K/k.

If A(K) = Hi(K,M) for some Galois module M defined over k, we speak
of cohomological invariants with values in M . If F (K) = H1(K,G) for some
algebraic group G defined over k, we speak of "invariants of G" (a more ex-
plicit terminology would be "invariants of G-torsors"). If G is a classical group,
one recovers some familiar functors; in particular, if G = On is the classical
orthogonal group, the corresponding F is isomorphic to the functor Quadn

of non-singular n-dimensional quadratic forms. Taking M = Z/2Z with triv-
ial Galois action, the classical invariants of quadratic forms q such as the de-
terminant det(q) ∈ K×/(K×)2 ≃ H1(K,Z/2Z) and the Hasse invariant in
Br(K)[2] ≃ H2(K,Z/2Z) give examples of cohomological invariants of On. In
[2] Serre gives a complete description of mod 2 cohomological invariants of On,
proving that they form a free module over H∗(k,Z/2Z) with basis given by the
Stiefel-Whitney invariants wi (the determinant and Hasse invariant are then
recovered as, respectively, w1 and w2).

Serre also introduces in [2] the notion of Witt invariants (which amounts to
taking A(K) =W (K) the Witt group of K), noticing that the formal properties
of the Witt group regarding residues and specialization with respect to discrete
valuations are similar enough to cohomology groups that a similar theory can
be developped. For Witt invariants of On, he proves that they form a free
W (k)-module generated by the λ-operations λi (for 0 ⩽ i ⩽ n).

Although there is clearly much more literature devoted to cohomological
invariants, in particular due to their use for rationality problems and compu-
tations of essential dimensions of algebraic groups, the solution of the Milnor
Conjecture by Voevodsky gives a direct connexion between cohomological and
Witt invariants which can motivate a closer interest in those. Explicitly, if we
can define a Witt invariant α ∈ Inv(F,W ) with values in In ⊂ W (where In
is the nth power of the fundamental ideal of the Witt group), then composing
with the canonical isomorphism In(K)/In+1(K)

∼→ H2(K,Z/2Z) defines a co-
homological invariant in Invn(F,Z/2Z). It is not difficult to realize that one
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recovers all cohomological invariants of On in this way (see [3, Section 9] for
instance)

Now we can ask the question of invariants of G = O(A, σ) where (A, σ) is
a central simple algebra with orthogonal involution. This algebraic group is a
form of On (which corresponds to the case where A =Mn(k) and σ is the adjoint
involution of the form ⟨1, . . . , 1⟩), so we might expect a similar description of
invariants. The pointed set H1(K,G) is this time is a canonical bijection with
the set of isometry classes of nondegenerate 1-dimensional hermitian forms over
(A, σ) (the base point being ⟨1⟩σ). We address in this article the question of
Witt invariants of O(A, σ) when A has index ⩽ 2 and degree 2r (which is a class
stable by scalar extension). If Q is the quaternion algebra Brauer-equivalent
to A, we can choose a Morita equivalence between (A, σ) and (Q, γ) where γ
is the canonical symplectic involution of Q, and this induces an isomorphism
between the functor H1(−, G) and H(r)

Q , where for any extension K/k, H(r)
Q (K)

is the set of isometry classes of nondegenerate anti-hermitian forms of reduced
dimension 2r over (QK , γK). Our main result is then Theorem 4.7, which states
that the Witt invariants of H(r)

Q (K) (and therefore of G) are again generated
by λ-operations (this time in the sense of [4]), but the coefficients have to be
taken not only in W (k) but in the mixed Witt ring W̃−1(Q, γ) introduced in
[5]. Furthermore, such a decomposition is not exactly unique, the norm form
nQ being the obstruction.

Notations and conventions
If Q is a quaternion algebra, γ is its canonical symplectic involution, Q0 is the
space of pure quaternions, and Q×

0 the set of invertible pure quaternions.

1 Mixed Witt rings

1.1 General case
Let (A, σ) be an Azumaya algebra with involution of the first kind over k, and
ε ∈ µ2(k). Then SW ε(A, σ) is defined as the monoid of ε-hermitian forms
over (A, σ), with orthogonal sums, GW ε(A, σ) is the Grothendieck group of
SW ε(A, σ), and W ε(A, σ) is the quotient of GW ε(A, σ) by the subgroup of
hermitian forms.

For any a ∈ A× such that σ(a) = εa, the elementary diagonal form ⟨a⟩σ is

⟨a⟩σ : A×A −→ A
(x, y) 7−→ σ(x)ay.

(1)

The diagonal form ⟨a1, . . . , ar⟩σ is the orthogonal sum

⟨a1, . . . , ar⟩σ = ⟨a1⟩σ ⊥ · · · ⊥ ⟨ar⟩σ. (2)

When (A, σ) = (k, Id) and ε = 1 we just write SW (k), GW (k) and W (k).
Note that W ε(A, σ) is naturally a W (k)-module. We define a Z/2Z-graded
GW (k)-module

G̃W
ε
(A, σ) = GW (k)⊕GW ε(A, σ) (3)
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and a Z/2Z-graded W (k)-module

W̃ ε(A, σ) =W (k)⊕W ε(A, σ). (4)

If (A, σ) and (B, τ) are Azumaya algebra with involution of the first kind
over k, and ε0 ∈ µ2(k), we write

(B, τ)
(V,h)
⇝ (A, σ) (5)

if V is a B-A-bimodule, balanced over k, such that B ≃ EndA(V ) for this action,
and h is an ε0-hermitian form over (A, σ), and τ is the adjoint involution of h.
We then say that (5) is an ε0-hermitian Morita equivalence, or simply a Morita
equivalence. Such an equivalence induces graded isomorphisms h∗ which fit in
this commutative diagram

G̃W
ε
(B, τ) G̃W

εε0
(A, σ)

W̃ ε(B, τ) W̃ εε0(A, σ)

h∗

h∗

(6)

such that h∗ is the identity on the even components GW (k) and W (k).
In [5], a graded commutative ring structure is defined on G̃W

ε
(A, σ) and

W̃ ε(A, σ) such that (6) is a commutative diagram of rings. The product is
characterized by

⟨a⟩σ · ⟨b⟩σ ≃ Tσ,a,b ∈ SW (k) (7)

where Tσ,a,b is the twisted involution trace form defined as

Tσ,a,b : A×A −→ k
(x, y) 7−→ TrdA(σ(x)ayσ(b)).

(8)

Furthermore, if K/k is a field extension, then the scalar extension maps
induce a commutative diagram

G̃W
ε
(B, τ) G̃W

εε0
(A, σ)

G̃W
ε
(BK , τK) G̃W

εε0
(AK , σK)

h∗

(hK)∗

(9)

and similarly for mixed Witt rings.
If (A, σ) = (k, Id) and ε = 1, the canonical Z/2Z-graded W (k)-module

isomorphism
W̃ 1(k, Id) =W (k)⊕W (k) ≃W (k)[Z/2Z] (10)

is a graded W (k)-algebra isomorphism. Let us write

δ : W̃ 1(k, Id) →W (k) (11)

for the map W (k) ⊕W (k) → W (k) given by the sum of components. It is a
W (k)-algebra morphism.
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1.2 Quaternion algebras
We consider the case of a quaternion algebra Q with its canonical involution
γ, and ε = −1. Then for any invertible pure quaternions z1, z2 ∈ Q×

0 , a direct
computation of the form Tγ,z1,z2 in (8) (see [5, Prop 4.12]) shows that we have
in W̃−1(Q, γ):

⟨z1⟩γ · ⟨z2⟩γ = ⟨−TrdQ(z1z2)⟩φz1,z2 ∈W (k) (12)

where φz1,z2 is the unique 2-fold Pfister form whose Witt class is ⟨⟨z21 , z22⟩⟩−nQ ∈
W (k). If TrdQ(z1z2) = 0 (which means that z1 and z2 anti-commute), (12)
should be understood as saying that ⟨z1⟩γ · ⟨z2⟩γ = 0 ∈W (k).

When Q is not split, (12) entirely characterizes the W (k)-algebra structure
of W̃−1(Q, γ) since W−1(Q, γ) is additively generated by the ⟨z⟩γ . When Q is
split, we may choose z0 ∈ Q \ {0} such that z20 = 0. Then the left ideal Qz0 is a
2-dimensional k-vector space, and if we define the anti-symmetric bilinear form

bz0 : Qz0 ×Qz0 −→ k
(zz0, z

′z0) 7−→ −z0γ(z)z′,
(13)

or equivalently
b(x, y)z0 = γ(x)y (14)

for all x, y ∈ Qz0, we get an anti-hermitian Morita equivalence

(Q, γ)
(Qz0,bz0 )⇝ (k, Id). (15)

This induces a W (k)-algebra morphism

Φz0 : W̃−1(Q, γ)

(bz0 )∗
∼→ W̃ 1(k, Id)

∼→W (k)[Z/2Z] δ−→W (k) (16)

using (6), (10) and (11). Note that the restriction of Φz0 to W (k) is the identity.

Lemma 1.1. Let z0 ∈ Q0 \ {0} be such that z20 = 0. Then for any z ∈ Q×
0 ,

(bz0)∗(⟨z⟩γ) is isometric to the symmetric bilinear form

bz0,z : Qz0 ×Qz0 −→ k
(z1z0, z2z0) 7−→ −TrdQ(z0γ(z1)zz2).

(17)

If z and z′ anti-commute, this form is a hyperbolic plan; otherwise, it is isomet-
ric to ⟨−TrdQ(zz0)⟩⟨⟨z2⟩⟩.

Proof. From the general theory of hermitian Morita equivalences, (bz0)∗ sends
the anti-hermitian space (Q, ⟨z⟩γ) to

Q⊗Q Qz0 ×Q⊗Q Qz0 −→ K
(z1 ⊗ z0, z2 ⊗ z0) 7−→ bz0(z0, ⟨z⟩γ(z1, z2)z0).

Now

bz0(z0, ⟨z⟩γ(z1, z2)z0)z0 = −z0(γ(z1)zz2)z0 = −TrdQ(z0γ(z1)zz2)z0

where the last equality is because for any x ∈ Q we have

TrdQ(z0x)z0 = (z0x− γ(x)z0)z0 = z0xz0.
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If z and z0 anti-commute, zz0 ̸= 0 and bz0,z(zz0, zz0) = 0, so bz0,z is isotropic,
and therefore a hyperbolic plan.

If z and z0 do not anti-commute, we have TrdQ(zz0) ̸= 0, and (z0, zz0) is
an orthogonal k-basis of Qz0 for bz0,z, which gives the diagonalization bz0,z ≃
⟨−TrdQ(zz0),TrdQ(zz0)z

2⟩.

1.3 λ-operations
In [4], for any Azumaya algebra with involution of the first kind (A, σ) over
k, and any ε ∈ µ2(k), a structure of pre-λ-ring (see [9] for a reference about
pre-λ-rings) is defined on G̃W

ε
(A, σ), whose restriction to GW (K) is the usual

λ-ring structure (studied for instance in [7]).
It is compatible with Morita equivalences, meaning that the top row of (6)

is an isomorphism of pre-λ-rings, and it is compatible with scalar extensions,
meaning the (9) is a commutative diagram of pre-λ-rings.

Note that the pre-λ-ring structure is compatible with the Z/2Z-grading,
meaning that λd(GW ε(A, σ)) is included in GW (k) when d is even, and in
GW ε(A, σ) when d is odd. Also note that by definition of a pre-λ-ring, λ0 is
the constant function to ⟨1⟩, and λ1 is the identity.

It follows from [4, Prop 5.2] that if σ is symplectic, a ∈ A× is ε-symmetric
and n = deg(A), then

λn(⟨a⟩σ) = ⟨NrdA(a)⟩. (18)

The square class defined by this 1-dimensional form is precisely the determinant
of ⟨a⟩σ (as defined in [6]).

2 Generic splitting and residues
A crucial method for us is the scalar extension to a generic splitting field of our
quaternion algebra. The behaviour of anti-hermitian forms under such generic
splitting has been the object of a fair amount of research, but we will mainly
refer to [8], which presents a good overview of the situation.

2.1 The generic elementary form
Let Q be a quaternion algebra. We choose a quaternionic basis (i, j, ij), with
i2 = a and j2 = b, such that (ij)2 is not a square in k. This is of course automatic
when Q is not split, and even when Q is split it is always possible unless k is
quadratically closed (we exclude this case from the present discussion).

We define the generic pure quaternion of Q as

ω̃ = xi+ yj + zij ∈ Qk(x,y,z). (19)

To make use of the fact that ω̃ is generic, we use the setting of versal torsors
as in [2, Section 5]. Let h0 ∈ H

(1)
Q (k) and G = O(h0) be its orthogonal group.

There is a canonical isomorphism h 7→ Iso(h, h0) between the functors H(1)
Q and

K 7→ H1(K,G) which allows us to view elementary forms as G-torsors. Then
⟨ω̃⟩γk(x,y,z)

∈ H
(1)
Q (k(x, y, z)) is a torsor over the function field of A3

k, and it is
the generic point of a torsor over A3

k \V (ω̃2) (because the specialization of ω̃ at
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some point in A3
k is non-invertible if and only if this point is in V (ω̃2)). Note

that ω̃2 ∈ k[x, y, z] is nothing but the pure norm form of Q in the coordinate
system given by the basis (i, j, ij) of Q0.

Lemma 2.1. The G-torsor over k(x, y, z) corresponding to ⟨ω̃⟩γk(x,y,z)
is a ver-

sal G-torsor.

Proof. Let K/k be a field extension with K infinite, and let h ∈ H
(1)
Q (K).

Clearly the points (s, t, r) ∈ A3(K) such that h ≃ ⟨si+ tj+ rij⟩γK
are dense, so

for any open U ⊂ A3
k there is a point in U(K) such that h is the corresponding

specialization of ⟨ω̃⟩γk(x,y,z)
seen as a torsor on A3 \ V (ω̃2).

We also define
ω = xi+ yj + ij ∈ Qk(x,y) (20)

and
∆ = −ω2 = −ax2 − by2 + ab =∈ k[x, y]. (21)

2.2 The Severi-Brauer variety
Let SB(Q) be the Severi-Brauer variety of Q. By definition, if K/k is an ex-
tension, SB(Q)(K) is the set of left ideals of reduced dimension 1 (equivalently,
of K-dimension 2) of QK . If I ⊂ QK is such an ideal, then I = Qz0 for some
non-zero pure quaternion z0 ∈ QK with z20 = 0, and z0 is unique up to a con-
stant. Thus all such z0 lie on a line L(I) which is recovered intrinsically as
L(I) = I ∩ γK(I).

If XQ is the projective conic defined by the pure norm form of Q, XQ(K)
is the set of lines in (QK)0 consisting of pure quaternion whose square is 0,
and there is a canonical isomorphism SB(Q) ≃ XQ sending I ∈ SB(Q)(K) to
L(I) ∈ XQ(K).

Let F∞ be the quadratic extension k(ij) ⊂ Q of k. Let V = ki ⊕ kj ⊂ Q0;
we define µ : V ⊗k F∞ → V as the multiplication map inside Q, and L∞ =
ker(µ) ⊂ Q0⊗kF∞. Then one may chech that L∞ is a point in XQ(F∞), which
defines a closed point ∞ ∈ XQ of degree 2 and residue field F∞.

Then if
Y = V (∆) ⊂ A2

k (22)

is the affine conic defined by ∆, there is a natural identification Y ≃ XQ \ {∞},
and therefore

F = Frac(k[x, y]/(∆)) = k(Y ) (23)

is a function field of XQ, and thus a generic splitting field of Q.
The image of ω ∈ Q⊗k k[x, y] in QF is written ω. By definition, of F ω2 = 0

(which is a witness to the fact that F is a splitting field of Q).

2.3 Valuations and residues
Let K/k be a field extension and v : K× → Z a valuation on K which is trivial
on k, with valuation ring Ov, uniformizing element π and residue field κv. Re-
call that there are residue maps ∂1v : W (K) → W (κv) (independent of π) and
∂2v,π :W (K) →W (κv) (which depends on the choice of π, but its kernel doesn’t).
They actually form a W (k)-algebra morphism ∂v,π : W (K) → W (κv)[Z/2Z]
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(where the even component is ∂1v and the odd component is ∂2v,π). In practice,
if q ∈ W (K), we can write q = ⟨a1, . . . , an⟩ + ⟨π⟩⟨b1, . . . , bm⟩ with ai, bi ∈ Ov

for all i and j, and then ∂1(q) = ⟨a1, . . . , an⟩ and ∂2,π(q) = ⟨b1, . . . , bm⟩.

Every closed point p ∈ Y (1) defines a discrete rank 1 valuation vp on F , with
residue field Fp. We write

W0(F ) =
⋂

p∈Y (1)

ker(∂2vp,πp
:W (F ) →W (Fp)) (24)

which does not depend on the choice of uniformizers πp for each p ∈ Y (1). It is
a sub-W (k)-algebra of W (F ).

There is also the valuation "at infinity" v∞ corresponding to the point ∞ ∈
X

(1)
Q , with residue field F∞. It is characterized by the fact that if u ∈ k[Y ] =

k[x, y]/(∆) is the class of u = k[x, y], then v∞(u) = −deg(u). We will shorten
∂1v∞ and ∂2v∞,π∞

as ∂1∞ and ∂2∞, where π∞ is any choice of uniformizer (which
will not matter to us).

2.4 Generic splitting of hermitian forms
Since ω2 = 0 in QF , we get a W (k)-algebra morphism

Φω : W̃−1(QF , γF ) →W (F ) (25)

(see (16)), and its composition with the scalar extension map yields a W (k)-
algebra morphism

Ψω : W̃−1(Q, γ) → W̃−1(QF , γF )
Φω−−→W (F ). (26)

By definition, the restriction of Ψω to W (k) is the scalar extension map
W (k) → W (F ), and its restriction to W−1(Q, γ) is the composition of the
scalar extension map to F with the isomorphism (bω)∗ (see (13)).

The exact sequences in [8, Thm 5.1, Thm. 5.2] have the following exact
sequences as direct consequences:

0 → nQW (k) →W (k)
Ψω−−→W0(F )

∂2
∞−−→W (F∞) (27)

0 →W−1(Q, γ)
Ψω−−→W0(F )

∂1
∞−−→W (F∞)

s∗−→W (k) (28)

where s : F∞ → k is any k-linear form which is 0 on k. We collect some
immediate observations on these sequences:

Proposition 2.2. We have W (k) ∩ Ker(Ψω) = nQW (k) and W−1(Q, γ) ∩
Ker(Ψω) = 0. The scalar extension map W̃−1(Q, γ) → W̃−1(QF , γF ) has kernel
nQW (k).

Corollary 2.3. We have nQW−1(Q, γ) = 0, and nQW̃−1(Q, γ) = nQW (k).

Proof. Since Ψω(nQ) = nQF
= 0, Ψω(nQW

−1(Q, γ)) = 0, so nQW
−1(Q, γ)

since Ψω is injective on W−1(Q, γ).
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Remark 2.4. In particular, this means that the W (k)-module structure of
W−1(Q, γ) factors through a W (k)/(nQ)-module structure.

A more precise description of the image and kernel of Ψω is:

Proposition 2.5. The scalar extension map W̃−1(Q, γ) → W̃−1(QF , γF ) has
kernel nQW (k), and there is an exact sequence

0 → (⟨2⟩⟨⟨(ij)2⟩⟩ − ⟨ij⟩γ)W̃−1(Q, γ) → W̃−1(Q, γ)
Ψω−−→W0(F ) → 0.

Proof. From the exact sequences (27) and (28), we see that the kernel ofW (k) →
W (F ) is nQW (k), that W−1(Q, γ) → W−1(QF , γF ) is injective, and that Ψω

has image in W0(F ) ⊂W (F ).
Let us show that W0(F ) is included in the image of Ψω. Let q ∈ W0(F ),

and write q∞ = ∂1∞(q) ∈ W (F∞). From (28), we get that s∗(q∞) = 0 ∈ W (k).
But since F∞ is quadratic extension of k, the scalar extension map and s∗ fit
in an exact sequence

W (k)
ρ−→W (F∞)

s∗−→W (k)

by [1, Thm 34.4]. Thus q∞ = ρ(q0) for some q0 ∈ W (k). Now let q1 =
q −Ψω(q0) ∈W0(F ). Then

∂1∞(q1) = ∂1∞(q)− ρ(q0) = 0

where we used that the composition

W (k)
Ψω−−→W (F )

∂1
∞−−→W (F∞)

is nothing but ρ by definition of ∂1∞. Using (28), we see that q1 = Ψω(h1) for
some h1 ∈W−1(Q, γ). In the end q = Ψω(q0 + h1).

Then we prove that ⟨⟨(ij)2⟩⟩ − ⟨ij⟩γ ∈ Ker(Ψω). By Lemma 1.1, we have

Ψω(⟨ij⟩γ) = (bω)∗(⟨ij⟩γF
)

≃ ⟨−TrdQF
(ij · ω)⟩⟨⟨(ij)2⟩⟩

= ⟨−2(ij)2⟩⟨⟨(ij)2⟩⟩
= ⟨2⟩⟨⟨(ij)2⟩⟩.

Finally, let q−h ∈ Ker(Ψω). Then qF = Ψω(h) so by (28) we have ∂1∞(qF ) =
0, so qF∞ = 0. By [1, Thm 34.7], q = ⟨⟨(ij)2⟩⟩q′ for some q′ ∈ W (k). Then
Ψω(h) = Ψω(⟨2⟩q′⟨ij⟩γ), so by injectivity of Ψω on W−1(Q, γ), h = ⟨2⟩q′⟨ij⟩γ
and q − h = ⟨2⟩q′(⟨2⟩⟨⟨(ij)2⟩⟩ − ⟨ij⟩γ).

3 Modules of invariants
In this section we define various modules of invariants, and prove some general
statements that relate them, independently of any choice of generators.
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3.1 Definition of the modules
We promote W̃−1(Q, γ) to a functor Field/k → Ab by setting

W−1(Q, γ) : K/k 7→W−1(QK , γK) (29)

with the obvious scalar extension morphisms.
Let us then define:

I
(r)
Q = Inv

(
H

(r)
Q , W̃−1(Q, γ)

)
(30)

I
(r)

Q = Inv
(
H

(r)
Q , W̃−1(Q, γ)/(nQ)

)
(31)

J
(r)
Q = Inv

((
H

(1)
Q

)r

, W̃−1(Q, γ)
)

(32)

J
(r)

Q = Inv
((
H

(1)
Q

)r

, W̃−1(Q, γ)/(nQ)
)
. (33)

These are all W̃−1(Q, γ)-modules. Since the functors where those invariants
take values are Z/2Z-graded, this induces a Z/2Z-grading on those modules,
and we will write

I
(r)
Q = 0I

(r)
Q ⊕ 1I

(r)
Q (34)

for the corresponding decomposition into even and odd component, and likewise
for the other modules. In the end, the module we are truly interested in is
0I

(r)
Q = Inv(H

(r)
Q ,W ), but it is necessary to study the full I(r)Q , which is reduced

to the study of I
(r)

Q , and in turn of J
(r)

Q , which is determined by induction from

I
(1)

Q . Note that by definition I(1)Q = I
(1)
Q and I

(1)

Q = I
(1)

Q .

Remark 3.1. By Corollary 2.3, we have 1I
(r)
Q = 1I

(r)

Q and 1J
(r)
Q = 1J

(r)

Q .

There is an obvious surjective natural transformation(
H

(1)
Q

)r

−→ H
(r)
Q

(h1, . . . , hr) 7−→ h1 ⊥ · · · ⊥ hr
(35)

and an exact sequence

0 → nQW → W̃−1(Q, γ) → W̃−1(Q, γ)/(nQ) → 0 (36)

which together induce a commutative diagram with exact lines and injective
vertical arrows:

0 Inv(H
(r)
Q , nQW ) I

(r)
Q I

(r)

Q

0 Inv
((
H

(1)
Q

)r

, nQW
)

J
(r)
Q J

(r)

Q

(37)

3.2 Invariants in nQW

Proposition 3.2. Every invariant in Inv(H
(1)
Q , nQW ) is constant.
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Proof. Let α ∈ Inv(H
(1)
Q , nQW ), which we can see as an invariant in Inv(H

(1)
Q ,W ).

Let K = k(x, y, z). By [2, Cor 27.13], since h̃ = ⟨ω̃⟩γK
is versal by Lemma 2.1,

α is constant if and only if α(h̃) ∈ W (K) is in the image of W (k) → W (K).
This is the case if and only if α(h̃) is unramified along all hypersurfaces of A3

k

(see [2, 27.8]). Since h̃ corresponds to a torsor over A3
k \ V (ω̃2), α(h̃) can only

be ramified along V (ω̃2) ([2, Thm 27.11]). But by hypothesis, α(h̃) = nQK
q

for some q ∈ W (K). Let O = k[x, y, z](ω̃2) be the valuation ring of the ω̃2-adic
valuation of k[x, y, z]. We can write q = q0 + ⟨ω̃2⟩q1 with q0, q1 ∈ W (O), and
since ⟨ω̃2⟩nQK

= nQK
because −ω̃2 is represented by nQK

(it is the reduced
norm of ω̃), we have q ∈W (O), ie it is unramified along V (ω̃2).

We present a setting to use induction arguments for invariants. Let F :
Field/k → Set and A : Field/k → Ab be functors. We write Hom for the inter-
nal Hom in a functor category, and HomZ for the internal Hom between two func-
tors with values in abelian groups. By definition, InvK(F,A) = Hom(F,A)(K).

Let X be a finite set and r ∈ N. There is a canonical map

HomZ(A
X ,Hom(F,A)) → HomZ(A

Xr

,Hom(F r, A)) (38)

defined through the isomorphisms HomZ(A
X ,Hom(F,A)) ≃ Hom(F×X,HomZ(A,A))

and HomZ(A
Xr

,Hom(F r, A)) ≃ Hom(F r ×Xr,HomZ(A,A)), where X is seen
as a constant functor, as well as the composition

Hom(F×X,HomZ(A,A)) → Hom((F×X)r,HomZ(A,A)
r) → Hom((F×X)r,HomZ(A,A))

(39)
where the first map is the diagonal embedding, and the second one is induced
by the composition map HomZ(A,A)

r → HomZ(A,A) (that is, (f1, . . . , fr) 7→
f1 ◦ · · · ◦ fr).

It is an easy fact to prove that under the canonical map (38), an isomorphism
AX ∼→ Hom(F,A) is sent to an isomorphism AXr

,Hom(F r, A). There are two
special cases that are of interest to us, and we highlight them as lemmas.

Lemma 3.3. If the canonical map A → Hom(F,A) is an isomorphism, which
means all invariants in InvK(F,A) are constant for all K/k, then for any r ∈ N,
all invariants in InvK(F r, A) are also constant.

Proof. It is straightforward to see that (38) (with X = {∗}) sends the canonical
map A→ Hom(F,A) to the canonical map A→ Hom(F r, A), as it corresponds
to the constant map Hom(F × X,HomZ(A,A)) to the identity of A, and the
r-fold composition of the identity is the identity.

Lemma 3.4. Suppose A is actually a functor to the category of commutative
rings. For any finite family (αx)x∈X ∈ Inv(F,A)X , we define (αx)x∈Xr ∈
Inv(F r, A)X

r

, where

α(x1,...,xr)(f1, . . . , fr) =

r∏
i=1

αxi
(fi).

Assume that (αx)x∈X is a strong basis of Inv(F,A), meaning that it is a basis as
an A(k)-module which remains an A(K)-basis of InvK(F,A) for all K/k. Then
(αx)x∈Xr is a strong basis of Inv(F r, A).

10



Proof. The family (αx)x∈X defines a map AX → Hom(F,A), and one easily
checks that (38) sends it to the map AXr → Hom(F r, A) defined by (αx)x∈Xr .
Then we may conclude as (αx)x∈X is a strong basis if and only if the corre-
sponding AX → Hom(F,A) is an isomorphism.

Then we can use our induction properties to prove:

Proposition 3.5. For any r ∈ N, all invariants in Inv
((
H

(1)
Q

)r

, nQW
)

and

Inv(H
(r)
Q , nQW ) are constant. An invariant in I(r)Q is constant if and only if its

image in I
(r)

Q is constant.

Proof. From Proposition 3.2, the hypothesis of Lemma 3.3 is satisfied for F =

H
(1)
Q and A = nQW , which settles the case of Inv

((
H

(1)
Q

)r

, nQW
)
. Since

Inv(H
(r)
Q , nQW ) is embedded in Inv

((
H

(1)
Q

)r

, nQW
)

(see 37), those invariants
are also constant.

The second statement is a straightfoward consequence of the first one, using
the top exact row in (see 37).

3.3 Generic splitting

Our description of I
(1)

Q will rely on generic splitting to reduce to our knowledge
of invariants of Quad2.

Let α ∈ I
(r)

Q , and let L/F be some extension. We define a function

ξ(r)(α) : Quad2r(L) →W (L) (40)

through the commutative diagram

H
(r)
QF

(L) W̃−1(QL, γL)

Quad2r(L) W (L).

α

(bωL
)∗ ΦωL

ξ(r)(α)

(41)

This defines an invariant ξ(r)(α) ∈ InvF (Quad2r,W ) because of the compatibil-
ity of Morita equivalences with scalar extensions, expressed in the commutative
diagram (9).

We have thus defined a map

ξ(r) : I
(r)

Q → InvF (Quad2r,W ). (42)

Similarly, we define

ζ(r) : J
(r)

Q → InvF (Quadr2,W ) (43)

through a diagram

H
(1)
QF

(L)r W̃−1(QL, γL)

Quad2(L)
r W (L).

α

(bωL
)r∗ ΦωL

ζ(r)(α)

(44)

11



By construction, the natural diagram

I
(r)

Q InvF (Quad2r,W )

J
(r)

Q InvF (Quadr2,W )

ξ(r)

ζ(r)

(45)

commutes.
Recall that InvF (Quad2r,W ) is aW (F )-module, and through Ψω : W̃−1(Q, γ) →

W (F ), it is also a W̃−1(Q, γ)-module.

Lemma 3.6. The maps ξ(r) and ζ(r) are morphisms of W̃−1(Q, γ)-modules.
They are injective on 0I

(r)

Q , 1I
(r)

Q , 0J
(r)

Q and 1J
(r)

Q .

Proof. The fact that ξ is a W̃−1(Q, γ)-module morphism follows from the defi-
nition: let α ∈ I

(r)

Q and x ∈ W̃−1(Q, γ). Then for any extension L/F and any
q ∈ Quad2r(L), if h ∈ H

(r)
Q (L) is such that (bωL

)∗(h) = q, we have

ξ(r)(xα)(q) = ΦωL
(xLα(h))

= ΦωL
(xL)ΦωL

(α(h))

= (ΦωL
(x))Lξ

(r)(α)(q)

= (x · ξ(r)(α))(q).

If ξ[r)(α) = 0, then let K/k be an extension, and let h ∈ H
(r)
Q (K). Then by

construction we have

ΨωKF
(α(h)) = ξ(r)(α)((bωKF

)∗(hKF )) = 0.

If α is in 0I
(r)

Q or 1I
(r)

Q , then α(h) ∈ W (K)/(nQK
) or α(h) ∈ W−1(QK , γK);

since ΨωKF
is injective on these by Proposition 2.2, α(h) = 0, and therefore

α = 0.
The proofs are completely similar for ζ [r) so we omit them.

4 Generators and relations
In this section we give explicit presentations of our modules of invariants, the
generators being given by the λd.

Precisely, for any d, r ∈ N, the composition

H
(r)
QK

↪→ G̃W
−1

(QK , γK)
λd

−→ G̃W
−1

(QK , γK) → W̃−1(QK , γK) (46)

for all extensions K/k form an invariant in I
(r)
Q , which we again denote λd.

The compatibility with scalar extensions is expressed by the fact that (9) is a
commutative diagram of pre-λ-rings.

The image of λd in I
(r)

Q is written λ
d
. Note that if d is even then λd ∈ 0I

(r)

Q ,

and if d is odd then λd ∈ 1I
(r)

Q .
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4.1 Structure of I(r)Q

Lemma 4.1. Let r, d ∈ N. The morphism ξ(r) sends λ
d ∈ I

(r)

Q to λd ∈
InvF (Quad2r,W ).

Proof. The statement is equivalent to the commutativity of

H
(r)
QF

(L) W̃−1(QL, γL)

Quad2r(L) W (L)

λd

(bωL
)∗ ΦωL

λd

for all extensions L/F , and this is a simple consequence of the fact that (6) is
a commutative diagram of pre-λ-rings.

The crucial technical result is:

Theorem 4.2. The W̃−1(Q, γ)/(nQ)-module I
(1)

Q is free, with basis (λ
0
, λ

1
, λ

2
).

Proof. Technically, in order to use our results on generic splitting, we need to
distinguish the case where k is quadratically closed, since this is the only case
where our description of F using a closed point of degree 2 does not apply.
When k is quadratically closed, Q is split, and the result is easily reduced using
a Morita equivalence to the case of Witt invariants of Quad2, which is treated
in [2, Thm 27.16]. We now exclude k being quadratically closed for the rest of
the proof.

Let α ∈ I
(1)

Q . Then by [2, Thm 27.16], ξ(1)(α) can be written q0+q1·λ1+q2·λ2
for unique elements qi ∈W (F ). We study the residues of the qi with respect to
the valuations coming from closed points of XQ.

Let us write K = k(x, y), and KF = K ⊗k F . For any field extension E/L,
we will write ρE/L for the scalar extension morphism W (E) → W (L). Let us
consider

h = ⟨ω ⊗ 1⟩γKF
∈ H

(1)
Q (KF )

q = ΨωKF
(h) ∈ Quad2r(KF )

θ = ρKF/F (q0) + qρKF/F (q1) + ⟨det(q)⟩ρKF/F (q2) ∈W (KF ).

Then using Lemma 4.1, we have

θ = ξ(1)(α)(q) = ΨωKF
(α(hKF )).

According to Lemma 1.1, we can write q = ⟨f⟩⟨⟨g⟩⟩ with

g = −∆⊗ 1 ∈ k[x, y]⊗k k ⊂ KF

= ax2 ⊗ 1 + by2 ⊗ 1− ab⊗ 1

f = −TrdQKF
(ω ⊗ ω) ∈ k[x, y]⊗ k[x, y] ⊂ KF

= −2(ax⊗ x+ by ⊗ y − ab⊗ 1).

Let v be a valuation on F which is either vp for some p ∈ X
(1)
Q , with valuation

ring Ov, uniformizer π and residue field Fv. We can have p ∈ Y (1) or p = ∞.
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Then v extends naturally to a discrete rank 1 valuation w on KF with residue
field KFv, trivial on K ⊗k k. If we see KF as the function field of P2 × XQ,
then w is the valuation associated to the hypersurface P2 × {p}.

We write f = (1 ⊗ πl)f ′ with l ∈ Z and f ′ ∈ k[x, y] ⊗k Ov. If p ∈ Y (1) we
simply take l = 0 and f ′ = f , and if p = ∞ we can take l = −1. The image of f ′
in k[x, y]⊗k Fv is written f . Let us take i ∈ {1, 2}. Then for any m ∈ {0, 1, 2}
we have in W (KFv):

∂iw(qm) = ρKFv/Fv
(∂iv(q0))

∂iw(⟨f⟩) =
{

0 if i = 2 and p ∈ Y (1), or i = 1 and p = ∞
⟨f⟩ if i = 1 and p ∈ Y (1), or i = 2 and p = ∞

∂1w(⟨g⟩) = ⟨−∆⊗ 1⟩
∂1w(⟨g⟩) = 0

and therefore

∂iw(θ) = ρKFv/Fv
(∂iv(q0)) + ⟨f⟩⟨⟨−∆⊗ 1⟩⟩ρKFv/Fv

(∂jv(q1)) (47)

+ ⟨∆⊗ 1⟩ρKFv/Fv
(∂iv(q2)) ∈W (KFv) (48)

where j = i if p ∈ Y (1) and j ̸= i if p = ∞.
We consider that discrete rank 1 valuation u′ on KFv corresponding to the

hypersurface XQ ×{p} in P2 ×{p}, with residue field F ⊗k Fv. Then we take a
valuation u′′ on F ⊗k Fv corresponding to any one of the two Fv-rational points
in {p}×{p} ≃ Spec(Fv)×Spec(Fv). A crucial fact is that if [f ] ∈ F ⊗kFv is the
image of f ∈ k[x, y]⊗k Fv, then u′′([f ]) = 1. Indeed, the hypersurface of Y × Y
defined by the image of f ∈ k[x, y]⊗k k[x, y] in k[x, y]⊗k k[x, y] = k[Y ]⊗k k[Y ]
is the diagonal embedding Y → Y × Y . Thus the valuation of [f ] at any point
in the intersection of the diagonal of XQ×XQ and XQ×{p}, which is precisely
{p} × {p}, is 1. This means that if u = u′′ ◦ u′ is the composed valuation on
KFv, with value group Z2 and residue field Fv, then u(−∆ ⊗ 1) = (1, 0) and
u(f) = (0, 1). One also sees that k ⊗k Fv ⊂ O×

u .
Using ∆⊗ 1 and f as uniformizers, we get a residue map

∂u :W (KFv) →W (Fv)[(Z/2Z)2]

such that, using (47):

∂u(∂
i
w(θ)) = (∂iv(q0), ∂

j
v(q1), ∂

i
v(q2), ∂

j
v(q1)) ∈W (Fv)[(Z/2Z)2]. (49)

Since θ is in the image of ΨωKF
, by the exact sequences (27) and (28) we

have that ∂iw(θ) = 0 when i = 2 and p ∈ Y (1), which yields

∂2v(q0) = ∂2v(q1) = ∂2v(q2) = 0,

in other words q0, q1, q2 ∈W0(F ). From this point we assume that p = ∞.
Now assume α ∈ 0I

(r)

Q . Then α(h) ∈ W (K)/(nQK
) so by (27) we have

∂2w(θ) = 0, which yields with (49):

∂2v(q0) = ∂1v(q1) = ∂2v(q2) = 0,
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so q0 = Ψω(φ0), q1 = Ψω(h1) and q2 = Ψω(φ2), with φ0, φ2 ∈ W (k) uniquely
determined modulo nQ, and h1 ∈ W−1(Q, γ) uniquely determined. This shows
that

ξ(1)(α) = ξ(1)(φ0 + h1λ
1
+ φ2λ

2
)

and by injectivity of ξ(1) on 0I
(r)

Q (Lemma 3.6), we deduce that

α = φ0 + h1λ
1
+ φ2λ

2
,

for unique φ0, φ2 ∈W (k)/(nQ) and a unique h1 ∈W−1(Q, γ).
Likewise, assume that α ∈ 1I

(r)

Q . This time α(h) ∈W−1(QK , γK) so by (27)
we have ∂1w(θ) = 0, then

∂1v(q0) = ∂2v(q1) = ∂1v(q2) = 0,

and again by injectivity of ξ(1) on 1I
(r)

Q , we have unique h0, h2 ∈ W−1(Q, γ)
and a unique φ1 ∈W (k)/(nQ) such that

α = h0 + φ1λ
1
+ h2λ

2
.

In the general case, we write α = α0+α1 with α0 ∈ 0I
(r)

Q and α1 ∈ 1I
(r)

Q , and
the two previous points show that there are unique x0, x1, x2 ∈ W̃−1(Q, γ)/(nQ)
such that

α = x0 + x1λ
1
+ x2λ

2
.

We get the more general case by induction. First:

Corollary 4.3. For any r ∈ N, the W̃−1(Q, γ)/(nQ)-module J
(r)

Q is free, with

basis (λ
d
)d∈{0,1,2}r , where

λ
d
(h1, . . . , hr) =

r∏
i=1

λ
di
(hi).

If α =
∑

d xdλ
d
, then α ∈ 0J

(r)

Q if and only if xd ∈W (k)/(nQ) for all d with

|d| =
∑

i di is even, and xd ∈ W−1(Q, γ) when |d| is odd. Similarly, α ∈ 1J
(r)

Q

if and only if xd ∈ W−1(Q, γ) when |d| is even and xd ∈ W (k)/(nQ) when |d|
is odd.

Proof. This is a direct application of Lemma 3.4, since I
(1)

Q = J
(1)

Q .

Clearly, λ
d ∈ 0J

(r)

Q when |d| is even, and λ
d ∈ 1J

(r)

Q when |d| is odd. So if

α =
∑

d xdλ
d
, and xd = qd + hd, then α = α0 + α1 with

α0 =
∑

|d|even

qdλ
d
+

∑
|d|odd

hdλ
d

and
α1 =

∑
|d|even

hdλ
d
+

∑
|d|odd

qdλ
d

and since α0 ∈ 0J
(r)

Q and α1 ∈ 1J
(r)

Q , this is the unique decomposition, and the
result follows.
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We can then deduce:

Theorem 4.4. For any r ∈ N, the W̃−1(Q, γ)/(nQ)-module I
(r)

Q is free, with

basis (λ
0
, . . . , λ

2r
).

Proof. Let α ∈ I
(r)

Q , and β its image in J
(r)

Q . We write

β =
∑
d

xdλ
d
.

We can also write

ξ(r)(α) =

2r∑
d=0

ydλ
d

for unique elements yd ∈ W (F ). The image of λd ∈ InvF (Quad2r,W ) in
InvF (Quadr2,W ) is

∑
|d|=d λ

d, which implies by the diagram (45):

ζ(r)(β) =
∑
d

ψω(x|d|)λ
d

and therefore by uniqueness of the decomposition:

xd = Ψω(x|d|)

for all d.
If α ∈ 0I

(r)

Q or α ∈ 1I
(r)

Q , then each xd is in W (k)/(nQ) or W−1(Q, γ) by
Corollary 4.3, so by injectivity of Ψω on these groups (Proposition 2.2), xd only
depends on |d|. If x|d| is this common value, then

β =

2r∑
d=0

xd

∑
|d|=d

λ
d

 .

Since
∑

|d|=d λ
d

is the image of λ
d ∈ I

(r)

Q in J
(r)

Q , by injectivity of I
(r)

Q → J
(r)

Q

we get

α =

2r∑
d=0

xdλ
d

for unique elements xd (with xd ∈W (k)/(nQ) if d is even and xd ∈W−1(Q, γ)
if d is odd).

Similarly, if α ∈ 1I
(r)

Q we deduce that α =
∑2r

d=0 xdλ
d

for unique elements
xd, with xd ∈W (k)/(nQ) if d is odd and xd ∈W−1(Q, γ) if d is even.

In general, we decompose α as α0 + α1 with αi ∈ iI
(r)

Q to get the expected
result.

Corollary 4.5. The commutative diagram (37) with exact lines can be refined
as

0 nQW I
(r)
Q I

(r)

Q 0

0 nQW J
(r)
Q J

(r)

Q 0
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Proof. The nQW in the diagram come from Proposition 3.5. The surjectivities
follows from Theorem 4.4 and Corollary 4.3, since the generators λd ∈ I

(r)

Q and

λd ∈ J
(r)

Q are the images of λd ∈ I
(r)
Q and λd ∈ J

(r)
Q .

4.2 Structure of I(r)Q

The structure of I(r)Q is slightly more complicated than that of I(r)Q , as it is not
a free module. The (only) obstruction to being free comes from the following
simple fact:

Proposition 4.6. In I
(r)
Q , for any d ∈ N we have that

nQ · λd =

{
0 if d is odd(

r
d/2

)
if d is even.

Proof. The statement when d is odd follows from Corollary 2.3.
When d is even, we first treat the case r = 1, where we only need to look

at d = 2. Let K/k be some extension, and h = ⟨z⟩γK
∈ H

(1)
Q (K). Then

λ2(h) = ⟨NrdQK
(z)⟩, and by definition NrdQK

(z) is represented by the 2-fold
Pfister form nQK

, so nQK
λ2(h) = nQK

.
Now if rN∗, and h = ⟨z1, . . . , zr⟩γ , we have

nQλ
2d(h) =

∑
d1+···+dr=d

nQλ
d1(⟨z1⟩) · · ·λd1(⟨z1⟩).

In the sum, all di are 0, 1 or 2; if one of them is 1 then the term is 0 from the
case where d is odd. When all of them are 0 or 2, the case r = 1 shows that
the term is equal to nQ. A simple counting argument shows that there are

(
r
d

)
non-zero terms.

This leads us to introduce

χ(r) : W̃−1(Q, γ)2r+1 −→ W̃−1(Q, γ)
(x0, . . . , x2r) 7−→

∑r
i=0

(
r
i

)
x2i.

(50)

We can then state the main result of this article.

Theorem 4.7. The W̃−1(Q, γ)-module I(r)Q is generated by (λ0, . . . , λ2r).
If (x0, . . . , x2r) ∈ W̃−1(Q, γ)2r+1, then the invariant α =

∑2r
d=0 xdλ

i is con-
stant if and only if xd ∈ nQW (k) for all d > 0, and in that case the constant is
χ(r)(x0, . . . , x2r).

Proof. From the exact sequence of W̃−1(Q, γ)-modules

0 → nQW (k) → I
(r)
Q → I

(r)

Q → 0

of Corollary 4.5, and the fact that I
(r)

Q is generated by the λ
d
, we deduce that

I
(r)
Q is generated by the λd.

Let α =
∑2r

d=0 xdλ
d ∈ I

(r)
Q , and let α be its image in I

(r)

Q . Bu Proposition

3.5, α is constant if and only if α is, and since I
(r)

Q is free and the constant
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invariants in I
(r)

Q are the submodule generated by λ
0
, α is constant if and only

if the class of xd in W̃−1(Q, γ) is 0 for d > 0. By Corollary 2.3, this means that
xd ∈ nQQ(k).

If we write xd = nQyd for each d > 0, then by Proposition 4.6 we have

α = x0 +

2r∑
d=1

yd · nQλd

= x0 +

r∑
i=1

y2i · nQ
(
r

i

)
= χ(r)(x0, . . . , x2r).

This theorem gives a presentation of I(r)Q as a W̃−1(Q, γ)-module:

I
(r)
Q =

〈
λ0, . . . , λ2r | ∀0 ⩽ i ⩽ r, nQλ2i = nQ

(
r

i

)
λ0

〉
. (51)

Of course when Q is split nQ = 0 and the module is free.
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