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Introduction
In the 30s, Ernst Witt ([23]) started the algebraic study of quadratic forms over
arbitrary fields (we will always assume that fields have characteristic not 2), as
opposed to the previous more arithmetic-focused treatments. The key ingredient
of his theory is to not only study individual quadratic forms, but consider them
as a whole, and give the set of quadratic forms over some fixed field K (up to
so-called Witt equivalence) a commutative ring structure W (K), using direct
sums and tensor products of quadratic spaces. The algebraic properties of this
ring reflect many interesting properties of the underlying field and its quadratic
forms; as an example that will be relevant to this article, the minimal prime
ideals of W (K) correspond to orderings of the field, the quotients giving the
various signature maps. Depending on the situation, it may be more useful to
consider the Grothendieck-Witt ring GW (K), of which W (K) is a quotient,
which is arguably more fundamental (since it reflects isometries of quadratic
forms and not only Witt equivalence), and has the additional structure of a
λ-ring ([16, 9.10]), given naturally by the exterior powers of quadratic spaces.

These constructions can be somewhat extended to the framework of ε-
hermitian forms over rings with involution (see section 1.1 or the reference
[10]). If (A, σ) is a ring with involution (we always assume that 2 in invert-
ible) We define the semi-group SW ε(A, σ) to be the set of isometry classes of
regular ε-hermitian modules over (A, σ), with addition given by orthogonal di-
rect sum. Its Grothendieck group is the Grothendieck-Witt group GW ε(A, σ)
of (A, σ), and the quotient by the subgroup of hyperbolic spaces is the Witt
group W ε(A, σ). We retrieve the Witt group of a field K by considering the
ring with involution (K, Id) (and taking ε = 1).

One key complication that appears when A is not commutative is that there
is no longer a good notion of tensor product of (hermitian) modules over (A, σ),
since the tensor product of two modules over A is a module over A ⊗K A, so
we are left with only (Grothendieck-)Witt groups instead of rings. In general
there is no obvious remedy to this, but the aim of this article is to study a
special situation in which a work-around can be found. Specifically, suppose A
is a central simple algebra over the field K, and σ is an involution of the first
kind (so σ|K = IdK). Then there is a hermitian Morita equivalence between
(A⊗K A, σ ⊗ σ) and (K, Id), implying that there is a correspondance between
hermitian modules over (A⊗K A, σ ⊗ σ) and quadratic modules over K, which
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is to say there is an isomorphism

GW (A⊗K A, σ ⊗ σ)
∼−→ GW (K).

Thus the natural map

GW ε(A, σ)×GW ε(A, σ)→ GW (A⊗K A, σ ⊗ σ)

given by the tensor product over K actually defines a map

GW ε(A, σ)×GW ε(A, σ)→ GW (K).

This allows us to construct an actual (Z/2Z-graded) ring

GW (K)⊕GW ε(A, σ).

If one wants to work with involutions of both types (orthogonal and symplectic)
at once, it is much more convenient to consider all at once hermitian and anti-
hermitian forms over (A, σ), and hence rather construct what we call the mixed
Grothendieck-Witt ring of (A, σ) (definition 2.16):

G̃W (A, σ) = GW (K)⊕GW−(K)⊕GW (A, σ)⊕GW−(A, σ),

as well as its quotient the mixed Witt ring (definition 2.21):

W̃ (A, σ) = W (K)⊕W (A, σ)⊕W−(A, σ),

which are commutative rings, naturally graded over the Klein group.

Overview
Section 1 is dedicated to hermitian Morita theory, as exposed for instance in
[10]. Our point of view is that the theory is most conveniently expressed in
the context of a certain monoidal category Brh(K) (inspired by works such
as [5] in the non-hermitian case) which we call the hermitian Brauer 2-group
(see proposition 1.7). After a brief review of the basic theory of algebras with
involution and hermitian modules, we define this category, and check that it is
a coherent 2-group (see definition 1.12 or [4]). We then introduce the notion
of strongly 2-torsion coherent 2-group, and show that Brh(K) satisfies this
definition (theorem 1.15), using in a crucial way the so-called involution trace
form and the Goldman element (which we study in section 1.2).

In section 2, we define the mixed (Grothendieck-)Witt ring of an algebra
with involution, and study some of its basic properties. We find it more con-
venient to first work with a semi-group S̃W (A, σ). Using the properties of
Brh(K), we show that it is a commutative semi-ring (proposition 2.7), and that
it is functorial in (A, σ) with respect to the category Brh(K), which expresses
compatibility with Morita equivalence (proposition 2.12). We deduce the same
results for G̃W (A, σ) (theorem 2.18) and W̃ (A, σ) (theorem 2.22), which con-
stitute the main results of the article. In addition, we study the effect of scalar
extension (section 2.5), the case where (A, σ) = (K, Id) (section 2.6), and prod-
ucts of diagonal forms (proposition 2.28).

Section 3 is dedicated to some computations in W̃ (A, σ) when (A, σ) is a
crossed product with involution (in a similar but slightly more general setting
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than [9], but less general than for instance [19]). We give a brief review of Galois
algebras (section 3.1) and crossed products (section 3.2), before we describe a
simple parametrization of crossed products with involution (proposition 3.11).
We use this to compute some products in W̃ (A, σ) (corollary 3.14), and in
particular any product when A is a quaternion algebra (proposition 3.22).

In section 4 we study exterior powers of hermitian modules, which is not
an obvious notion since A is not commutative. Adapting ideas found in [11]
(following Tamagawa), we define the alterning powers Altd(V ) of a module V
(definition 4.1), which inherit a hermitian form Altd(h) from (V, h) (definition
4.9). Using a certain Morita equivalence, we then define a new hermitian module
(Λd(V ), λd(h)), and the central result of the section is that this defines a pre-λ-
ring structure on G̃W (A, σ), functorial in (A, σ) (theorem 4.30). In section 4.5
we suggest a somewhat different approach of the classical notion of determinant
of an involution (definition 4.36, to be compared with [11, 7.2]), and show a
natural duality result (corollary 4.45). We also discuss some open questions, in
particular whether G̃W (A, σ) is a λ-ring.

Section 5 is a brief overview of the basic properties of the fundamental fil-
tration of the mixed Witt ring, and its associated graded ring, which we call the
mixed cohomology ring by analogy with Milnor’s conjecture. The ulterior goal
is to construct cohomological invariants of algebras with involution in a natural
way.

Finally, in section 6 we use the ring structure on W̃ (A, σ) to give a more
natural treatment to the theory of signatures of involutions and hermitian forms
(for involutions of the first kind), as developped in [2] and [3] (following older
ideas in the literature). In particular we give a full description of Spec(W̃ (A, σ))
(proposition 6.4), very similar to the classical case of W (K). Above each order-
ing of K there are two distinct signature maps on W̃ (A, σ), and we interpret
the results in [3] as a quest to find a reasonable choice of signature above each
ordering, which is captured by a simple topological condition (theorem 6.32).

Preliminaries and conventions
We fix a base field K of characteristic not 2, and we identify symmetric bilinear
forms and quadratic forms over K, through b 7→ qb with qb(x) = b(x, x). Diag-
onal quadratic forms are denoted 〈a1, . . . , an〉, with ai ∈ K∗, and 〈〈a1, . . . , an〉〉
is the n-fold Pfister form 〈1,−a1〉 · · · 〈1,−an〉.

All rings are associative and with unit, and ring morphisms preserve the
units. Unless otherwise specified, modules are by default modules on the right,
and are assumed to be faithful modules. Every algebra and every module have
finite dimension over K. If A is a K-algebra, and V is a right A-module, then
EndA(V ) is a K-algebra acting on V on the left, with the tautological action
of functions on V . On the other hand, if V is a A-module on the left, then we
endow EndA(V ) with the product opposite to usual function composition, so
that EndA(V ) acts on V on the right.

When we say that (A, σ) is an algebra with involution over K, we mean that
A is a central simple algebra over K, and that σ is an involution of the first
kind on A, so σ is an anti-automorphism of K-algebra of A, with σ2 = IdA.
In general, “involution” will be synonym with “involution of the first kind”. We
set Sym(A, σ) for the set of symmetric elements of A, which satisfy σ(a) = a,
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and Skew(A, σ) for the set of anti-symmetric elements, for which σ(a) = −a.
The involution σ is orthogonal if dimK(Sym(A, σ)) = n(n + 1)/2, and it is
symplectic if dimK(Sym(A, σ)) = n(n−1)/2. In particular, (K, Id) is an algebra
with orthogonal involution. A quaternion algebra admits a unique symplectic
involution, called its canonical involution, and we denote it by γ.

If A is a central simple algebra over K, we write TrdA : A → K for the
reduced trace of A, and NrdA : A → K for its reduced norm. They can be
defined as descents of the usual trace and determinant maps on endormorphism
algebras of vector spaces.

If L/K is any field extension, and X is an object (algebra, module, involu-
tion, hermitian form, etc.) over K, then XL = X ⊗K L is the corresponding
object over L, obtained by base change.

A semi-group is a set endowed with an associative binary product (so the
difference with a monoid is the existence of a unit). If Γ is a monoid, then
a semi-group S is Γ-graded if it is equipped with a direct sum decomposition
S =

⊕
g∈Γ Sg. The Grothencieck group G(S) of S is the universal solution to

the problem of finding a morphism S → G where G is a group. In the case where
S is a commutative semi-group with cancellation (meaning that x + y = x + z
implies y = z), then the construction of G(S) is exactly the same as that of Z
from N, and the structural morphism S → G(S) is injective. Precisely, elements
of G(S) are formal differences x− y with x, y ∈ S, and x− y = x′− y′ in G(M)
iff x+ y′ = x′ + y in S. Since the functor S 7→ G(S) preserves direct sums, if S
is Γ-graded then G(S) inherits a natural Γ-grading.

What we call a semi-ring is a triple (S,+, ·) such that (S,+) is a commutative
semi-group, (S, ·) is a monoid, and we have the distributive law (often in the
literature it is asked that (S,+) is a monoid). We say that S is Γ-graded if
(S,+) has a Γ-grading such that SgSh ⊂ Sgh for all g, h ∈ Γ. If S is a semi-ring
then G(S) is naturally a ring, and if S is Γ-graded then G(S) is a Γ-graded ring.

If G is a group and R is a G-graded ring, then for any group H the group
algebra R[H] is naturally a (G × H)-graded ring. The augmentation map ε :
R[H]→ R is a G-graded ring morphism.

If R is a commutative ring, Spec(R) is the associated affine scheme, Spec0(R)
is the generic fiber of Spec(R) → Spec(Z) (which is the space of prime ideals
of residual characteristic 0), and minSpec(R) is the subspace of minimal prime
ideals.

1 The hermitian Brauer 2-group
In this section we review hermitian Morita theory, as developped in [7] or [10],
in the case of algebras with involution (for which we take [11] as a reference).
We adopt a categorical point of view that allows the theory to be expressed
in a very efficient way. The idea that (non-hermitian) Morita theory can be
expressed as the definition of some 2-category of algebras and bimodules has
been explored for instance in [5], but as far as we know this is the first time the
hermitian analogue is written down explicitly, even though it is mostly a matter
of reformulation. In fact, we define a certain category Brh(K), which we call
the hermitian Brauer 2-group of the field K, and much of the classical hermitian
Morita theory can be expressed by saying that Brh(K) is a “coherent 2-group”.
Furthermore, we introduce the notion of a “strongly 2-torsion” coherent 2-group,
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and show that Brh(K) satisfies this condition, which will be crucial in the rest
of the article, notably for proving the associativity of our various rings.

1.1 Hermitian modules and involutions
We start, for reader’s convenience as well as for establishing notations, by re-
viewing basic facts about hermitian modules, all stated without proof (see [10]
for a comprehensive reference over general rings with involution). LetA be a cen-
tral simple algebra over K, and let V be a right A-module. Then B = EndA(V )
is a central simple algebra over K that is Brauer-equivalent to A (this may be
taken as a definition of the Brauer-equivalence), and there is a canonical identi-
fication A ' EndB(V ) where V is naturally viewed as a left B-module. Such a
B-A-bimodule will be called a Morita bimodule. In this situation, HomA(V,A)
and HomB(V,B) are both naturally A-B-bimodule, and are actually canonically
isomorphic: f ∈ HomB(V,B) corresponds to f ′ ∈ HomA(V,A) such that for any
x, y ∈ V :

f(x)y = xf ′(y).

We will identify those two bimodules, and use the common notation V ∨; then
V ∨ is a Morita bimodule. There are also natural identifications A ' V ∨ ⊗B V
and B ' V ⊗AV ∨. As usual, there is a canonical bidual isomorphism V ' V ∨∨,
which is a bimodule isomorphism. The reduced dimension of V is rdimA(V ) =
deg(B).

Suppose A and B are endowed with respective involutions σ and τ . Then
we can define a A-B-bimodule V by axb = τ(b)xσ(a) for all a ∈ A, b ∈ B and
x ∈ V . It is obviously a Morita bimodule whenever V is, and clearly V = V .
Thus we have two methods for swapping the algebras of a Morita bimodule,
and it turns out that they commute, so we may define the adjoint bidomule of
V as V ∗ = V

∨
= V ∨, which is a Morita B-A-bimodule. It is easily seen that

V 7→ V ∗ defines a contravariant endofunctor on Morita B-A-bimodules, such
that there is a natural isomorphism

V
∼−→ V ∗∗

x 7−→ σ ◦ evx

where evx is the evaluation of linear forms at x.
Note that if we do not specify τ , we can still define V as a left A-module,

and A∗ as a right A-module. Then EndA(V ∗) ' Bop, so we need the choice
of an involution τ to turn V ∗ into a B-A-bimodule. Given the data of (A, σ)
and V , we define a sequilinear form h on V over (A, σ) to be a biadditive map
h : V × V → A such that for all x, y ∈ V and all a, b ∈ A:

h(xa, yb) = σ(a)h(x, y)b.

This is equivalent to defining a right A-module morphism ĥ : V → V ∗, where
h and ĥ are related by h(x, y) = ĥ(x)(y). We say that h is regular if ĥ is a
module isomorphism. Applying the “adjoint” functor to ĥ, we get a natural
map V ∗∗ → V ∗, and under the identification V ' V ∗∗ we get ĥ′ : V → V ∗. We
say that h is ε-hermitian for some ε ∈ K∗ when ĥ = εĥ′. This is equivalent to
the formula

h(y, x) = εσ(h(x, y))
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for all x, y ∈ V . It is easily seen that ε2 = 1, so ε = ±1. We say that h is
hermitian if ε = 1, and anti-hermitian if ε = −1 (if (A, σ) = (K, Id), we are
defining symmetric and anti-symmetric bilinear forms), and we call ε the sign
of h (sometimes denoted εh).

Now assume that B also has an involution τ , so V ∗ is a B-A-bimodule. Then
we say that (V, h) is a ε-hermitian Morita bimodule between (B, τ) and (A, σ) if
h is ε-hermitian and ĥ is actually an isomorphism of bimodules. The additional
condition on τ amounts to τ = σh where σh is the so-called adjoint involution
on B defined by

h(bx, y) = h(x, σh(b)y)

for all b ∈ B, x, y ∈ V . So in the same way that a right A-module defines
a Morita bimodule for a unique B, a regular ε-hermitian right module over
(A, σ) defines a ε-hermitian Morita bimodule for a unique (B, τ). Recall that
an involution can have two types: orthogonal or symplectic. Then σ and τ have
the same type if ε = 1, and opposite type if ε = −1. We define the type of h (or
(V, h)) to be the type of τ . We often identify the type of h or τ with an element
of ±1, with +1 corresponding to the orthogonal type, and −1 to the symplectic
type. Thus to h are associated its sign and its type in {±1}, and they coincide
iff σ is orthogonal.

When (V, h) is a Morita ε-hermitian bimodule between (B, τ) and (A, σ),
then there is a natural ε-hermitian form h : V × V → B over (B, τ) such that
ĥ : V → V

∗
is ĥ (using V

∗
= V ∗). Then h is characterized by

h(x, y)z = xh(y, z).

Note that every construction and every result stated above is compatible
with a change of base field.

1.2 The Goldman element
A very crucial feature of central simple algebras that will prove extremely useful
for us is the existence of the so-called Goldman element, and we take the time
here to collect some of its properties than are relevant in the article. We base
our account on [11, 3.A,10.A].

It is a defining property of Azumaya algebras that the so-called “sandwich
action”

A⊗K Aop −→ EndK(A)
a⊗ b 7−→ (x 7→ axy)

(1)

is a K-algebra isomorphism. In particular, there is an element in gA ∈ A⊗K A,
the Goldman element of A, that corresponds to the reduced trace of A, seen as
a linear map A → K ⊂ A. If A is split, so A = EndK(V ) for some K-vector
space V , then gA ∈ EndK(V ⊗K V ) is the exchange map (x⊗ y 7→ y ⊗ x) ([11,
3.6]).

More generally, for any d ∈ N, there is a unique group morphism Sd →
(A⊗d)∗ ([11, 10.1]), which we will denote as π 7→ gA(π), such that

gA((i i+ 1)) = 1⊗ · · · ⊗ 1⊗ gA ⊗ 1⊗ · · · ⊗ 1.

For d = 0, 1 this is the trivial morphism, and for d = 2 the morphism property
just means that g2

A = 1.
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Lemma 1.1. Let A and B be central simple algebras over K, and let V be a
Morita B-A-module. Then for any v1, . . . , vd ∈ V and any π ∈ Sd:

gB(π) · (v1 ⊗ · · · ⊗ vd) = (vπ−1(1) ⊗ · · · ⊗ vπ−1(d)) · gA(π).

Remark 1.2. In particular, when d = 2 and A = B = V , we get that for any
x, y ∈ A we have (x⊗ y)gA = gA(y ⊗ x), which is shown in [11, 3.6].

Moreover, if A = K, so B = EndK(V ) is split, this means that gB(π) is the
K-linear map (v1 ⊗ · · · ⊗ vd 7→ vπ−1(1) ⊗ · · · ⊗ vπ−1(d)), which is shown in [11,
10.1].

Proof. By construction of gA(π) and gB(π), we can reduce to the case where
d = 2 and π is the transposition, and extending the scalars if necessary we
may assume that A and B are split. In this case we have A ' EndK(U),
B ' EndK(W ), and V ' HomK(U,W ) with obvious actions, and for any
f1, f2 ∈ V and u1, u2 ∈ U :

(gB · f1 ⊗ f2)(u1 ⊗ u2) = gB(f1(u1)⊗ f2(u2))

= f2(u2)⊗ f1(u1)

= (f2 ⊗ f1)(gA(u1 ⊗ u2))

= (f2 ⊗ f1 · gA)(u1 ⊗ u2)

so indeed gB · f1 ⊗ f2 = f2 ⊗ f1 · gA.

Now suppose A is endowed with an involution σ. Then we may twist the
above sandwich action (1) to

A⊗K A −→ EndK(A)
a⊗ b 7−→ (x 7→ axσ(y)).

(2)

We will call this the “twisted sandwich action”, and unless otherwise specified
this is always the action we have in mind when we consider A as a left (A⊗KA)-
module (of course it depends on the choice of an involution σ). The following
lemma is inspired by [11, exercise I.12].

Lemma 1.3. The Goldman element of A is symmetric for the involution σ⊗σ
on A⊗K A, for any choice of involution σ of the first kind on A.

Furthermore, under the twisted sandwich action defined by σ, we find for
any x ∈ A, with ε = ±1 the type of σ:

gA · x = εσ(x),

(Id⊗σ)(gA) · x = TrdA(x),

(σ ⊗ Id)(gA) · x = TrdA(x),

(σ ⊗ σ)(gA) · x = εσ(x).

Proof. For the first statement see [11, 10.19]. As for the equalities, the second
one is a reformulation of the definition of gA, and the third and fourth follow
from the two first using that (σ ⊗ σ)(gA) = gA. It just remains to prove the
first one.
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We may reduce to the case where A is split, so A = EndK(V ) for some K-
vector space V , and σ = σb where b is a ε-symmetric bilinear form. We then have
the canonical isomorphism A ' V ⊗V , such that (v⊗w)(v′⊗w′) = b(w, v′)v⊗w′
and σ(v ⊗ w) = εw ⊗ v. Let (ei) be a basis of V , and (e∗i ) its dual basis for
b (if σ is orthogonal, we may take for (ei) an orthogonal basis, in which case
ei = e∗i ). Then g =

∑
i,j ei ⊗ e∗j ⊗ ej ⊗ e∗i (see the proof of [11, 3.6]), so

gA · (v ⊗ w) =
∑
i,j

(ei ⊗ e∗j ) · (v ⊗ w) · ε(e∗i ⊗ ej)

= ε
∑
i,j

b(e∗j , v)b(w, e∗i )ej ⊗ ej

=

(∑
i

b(e∗i , w)ei

)
⊗

∑
j

b(e∗j , v)ej


= w ⊗ v.

1.3 Definition of Brh(K)

We now come to the definition of the category Brh(K). The objects are the
algebras with involution (A, σ) over K. A morphism from (B, τ) to (A, σ) is
an isometry class of Morita ε-hermitian bimodule. We will usually identify a
module and its isometry class when no confusion is possible. To properly define
a category structure, we have to specify how to compose morphisms, and look
for identity morphisms.

Definition 1.4. Let (A, σ) be an algebra with involution over K. If a ∈ A∗

is a ε-symmetric invertible element, meaning that σ(a) = εa, then we define a
ε-hermitian form 〈a〉σ on A, seen as a right A-module:

A×A −→ A
(x, y) 7−→ σ(x)ay

.

This definition in particular makes sense for a ∈ K∗ and ε = 1.
We will write 〈a1, . . . , an〉σ for an orthogonal sum 〈a1〉σ ⊥ · · · ⊥ 〈an〉σ (where

all ai are ε-symmetric), and call such a form diagonal.

Remark 1.5. If A is a division algebra, then any ε-hermitian form is diagonal
in this sense, but this is not the case in general.

Proposition-definition 1.6. Let (A, σ), (B, τ) and (C, θ) be algebras with
involution over K. Let (U, h) be a ε-hermitian Morita bimodule between (C, θ)
and (B, τ), and let (V, h′) be a ε′-hermitian Morita bimodule between (B, τ) and
(A, σ).

Then (V, h′) ◦ (U, h) = (V ◦ U, h′ ◦ h) is a εε′-hermitian Morita bimodule
between (C, θ) and (A, σ), where

V ◦ U = U ⊗B V

and
(h′ ◦ h)(u⊗ v, u′ ⊗ v′) = h′(v, h(u, u′)v′). (3)

Moreover, the isometry class of (V ◦ U, h′ ◦ h) only depends on the isometry
classes of (U, h) and (V, h′).
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Proof. This is a special case of [10, I.8.1].

We can now state:

Proposition 1.7. With the composition of morphisms being given by definition
1.6, Brh(K) is a groupoid. The identity of (A, σ) is (A, 〈1〉σ), where A is a
A-A-bimodule in the tautological way, and the inverse of a morphism (V, h) is
(V , εhh) (where h is εh-hermitian).

Proof. The associativity of the composition is proved in [10, lemma I.8.1.1]. The
statement on identities is immediate given the definition of the composition, and
the statement about inverses is proved in [10, prop I.9.3.4].

Remark 1.8. The automorphisms in Brh(K) of an object (A, σ) are exactly
the diagonal forms 〈a〉σ for a ∈ K∗.

Remark 1.9. If f is a morphism in Brh(K), then we have defined in section
1.1 both its sign and its type. For composable morphisms, the sign of f ◦ g is
the product of the signs of f and g, while the type of f ◦ g is simply the type of
g.

Remark 1.10. There are several ways to extend this definition. First, it
would be natural to define a (weak) 2-category instead of a category, where
the morphisms would be actual bimodules (instead of isometry classes), and
2-morphisms would be isometries. Then Brh(K) is the 1-truncature of this
2-category, which would logically be called the hermitian Brauer 3-group.

We may also allow the base fieldK to carry itself an involution ι, and consider
algebras with involution that restrict to ι on K. This would allow a treatment
of unitary involutions when ι is non-trivial, and the present construction could
correspond to ι = IdK . The analogue of mixed Witt rings for unitary involutions
is more involved, and will be the subject of a future article.

We could extend the construction to more general base rings, instead of just
fields, and even to base schemes or potentially to locally ringed topos, in the
vein of [6].

Finally, we may consider more general algebras than Azumaya algebras,
which would give a larger (2-)category, and then retrieve Brh(K) as the sub-
category of “weakly invertible” objects.

All these directions can be combined for maximal generality, but are not
useful for the purpose of this article: we only need to consider isometry classes
for our constructions, and we require invertible objects and involutions of the
first kind. The extension to more general bases should be the subject of a future
article, but the case of base fields is already interesting.

Remark 1.11. It is known that a central simple algebra has an involution of the
first kind iff its Brauer class is in the 2-torsion subgroup Br(K)[2]. Furthermore,
if (A, σ) and (B, τ) are such that A and B are Brauer-equivalent, so that there
is a Morita B-A-bimodule V , then there is a ε-hermitian form h on V (unique
up to similitude) such that σh = τ . In other words, there is a morphism between
two objects (B, τ) and (A, σ) in Brh(K) iff A and B are Brauer-equivalent. In
particular, the set of isomorphism classes in Brh(K) is canonically identified
with Br(K)[2].
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1.4 The 2-group structure
The category Brh(K) inherits a monoidal structure from the usual tensor prod-
uct of algebras and modules. This structure has remarkable features of in-
vertibility and symmetry, which we encapsulate in theorem 1.15. The relevant
framework is that of 2-groups. Like many higher categorical matters, this notion
is subject to many slightly different definitions, depending on the authors; we
base our account on [4].

Recall that a weakly monoidal category is a category C endowed with a
functor ⊗ : C × C → C and a unit object 1, and isomorphisms

αx,y,z : (x⊗ y)⊗ z ∼−→ x⊗ (y ⊗ z)
lx : 1⊗ x ∼−→ x

rx : x⊗ 1
∼−→ x

verifying coherence conditions, most notably the MacLane pentagon (see [15,
VII.1]). The category is symmetric if moreover one has isomorphisms

sx,y : x⊗ y ∼→ y ⊗ x

satisfying some other coherence conditions, most importantly that sy,x ◦ sx,y =
Idx⊗y (see [15, VII.7]).

It is a basic fact that if (V, h) and (V ′, h′) are respectively a ε-hermitian
module over (A, σ) and a ε′-hermitian module over (A′, σ′), then (V⊗KV ′, h⊗h′)
is a εε′-hermitian module over (A⊗K A′, σ ⊗ σ′), with EndA⊗KA′(V ⊗K V ′) '
EndA(V ) ⊗K EndA′(V

′), and σh⊗h′ = σh ⊗ σh′ . Combined with elementary
facts about tensor products of algebras and modules, this easily establishes that
Brh(K) is a symmetric weakly monoidal category, with (K, Id) as a unit.

To account for (weak) invertibility of objects, we use the following definition:

Definition 1.12. A a coherent 2-group is a weakly monoidal category (C,⊗, 1)
where every morphism is invertible, and every object x ∈ C is equipped with
an adjoint equivalence (x, x, ix, ex), meaning that we are given an object x (the
weak inverse of x) and isomorphisms ix : 1 → x ⊗ x and ex : x ⊗ x → 1 such
that the following diagram commutes:

1⊗ x (x⊗ x)⊗ x x⊗ (x⊗ x)

x x⊗ 1.

ix⊗1

lx

αx,x,x

1⊗ex
r−1
x

To simplify notations, we will assume that C is strictly monoidal (which is a
benign assumption thanks to the coherence theorems, see [15, VII.2]). Then the
diagram simply states that the two obvious morphisms x⊗ x⊗ x→ x obtained
by collapsing either the left or the right side of the product actually give the
same map.

In [4], it is shown that x 7→ x can be made into a covariant functor, but we
will be interested in a case where this is trivially true. In fact, since two objects
of Brh(K) are isomorphic iff the underlying algebras are Brauer-equivalent (see
remark 1.11), the weak inverse of (A, σ) must be some (B, τ) such that A⊗K B
is Brauer equivalent to K, meaning that [A] + [B] = 0 in Br(K). But since
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[A] has order at most 2, this means that A and B must be Brauer-equivalent.
The most obvious choice is then (B, τ) = (A, σ), and we will show that indeed
this works. By analogy with the case of ordinary groups, where the property
that x−1 = x correspond to being a 2-torsion group, we make the following
definition:

Definition 1.13. A coherent 2-group is said to be 2-torsion if any object x is
its own weak inverse, so x = x.

If C is a 2-torsion coherent 2-group, then for any object x there are two
isomorphisms x⊗ x→ 1 given by the structure, namely ex and i−1

x . This leads
to the following definition:

Definition 1.14. A coherent 2-group is said to be strongly 2-torsion if for any
object x, we have x = x and ix = e−1

x .

Following the definition, if (C,⊗, 1) is a monoidal category (which as before
we treat as if it were strictly monoidal), it is a strongly 2-torsion coherent 2-
group if it is a groupoid and for every objet x we give an isomorphism ex :
x⊗ x→ 1 such that the two natural isomorphisms x⊗ x⊗ x→ x, obtained by
cancelling either the first two or the last two terms, are the same.

We may then state:

Theorem 1.15. The category Brh(K) is a strongly 2-torsion coherent 2-group,
with the counit

(A⊗K A, σ ⊗ σ)→ (K, Id)

of the adjunction associated to (A, σ) given by the hermitian bimodule (A, Tσ),
where the left action of A⊗K A on A is the “twisted sandwich action” (see (2))
and Tσ is the so-called involution trace form:

Tσ(x, y) = TrdA(σ(x)y). (4)

Proof. We first have to check that (A, Tσ) indeed defines a morphism from
(A ⊗K A, σ ⊗ σ) to (K, Id) in Brh(K); this means that σ ⊗ σ is the adjoint
involution of Tσ, which is shown in [11, prop 11.1]. Then we have to check that
the two morphisms (A⊗3, σ⊗3) → (A, σ) obtained by collapsing either the first
two or last two factors are actually equal, or otherwise formulated, that the
following diagram commutes :

(A⊗K A⊗K A, σ ⊗ σ ⊗ σ) (K ⊗A, Id⊗σ)

(A⊗K,σ ⊗ Id) (A, σ)

which amounts to giving an isometry between the hermitian bimodules (A⊗K A, h1)
and (A⊗K A, h2) where the left action of A⊗K A⊗K A and the right action of
A are in the first case

(a⊗ b⊗ c) ·1 (x⊗ y) ·1 d = (axσ(b))⊗ (cyd)

and in the second case

(a⊗ b⊗ c) ·2 (x⊗ y) ·2 d = (axd)⊗ (byσ(c))
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and the hermitian forms are respectively

h1(x⊗ y, x′ ⊗ y′) = TrdA(σ(x)x′)σ(y)y′

and
h2(x⊗ y, x′ ⊗ y′) = TrdA(σ(y)y′)σ(x)x′.

Let g ∈ A ⊗K A be the Goldman element; if g =
∑
i ai ⊗ bi, we define our

isometry from h1 to h2 by

ϕ : A⊗K A −→ A⊗K A
x⊗ y 7−→

∑
i(xaiy)⊗ σ(bi).

Note that 1 ⊗ 1 is sent to g′ = (Id⊗σ)(g). Since the bimodule A ⊗K A is
generated by the element 1 ⊗ 1 for both actions defined above, this is enough
to characterize ϕ, but we need to check that g′ is an admissible element for
the image of 1 ⊗ 1, which is equivalent to checking that we indeed defined a
bimodule morphism. We have

ϕ ((a⊗ b⊗ c) ·1 (x⊗ y) ·1 d) = ϕ ((axσ(b))⊗ (cyd))

=
∑
i

(axσ(b)aicyd)⊗ σ(bi)

and

(a⊗ b⊗ c) ·2 ϕ(x⊗ y) ·2 d =
∑
i

(a⊗ b⊗ c) ·2 (xaiy)⊗ σ(bi) ·2 d

=
∑
i

(axaiyd)⊗ (bσ(bi)σ(c)).

We are thus led to show that∑
i

σ(b)aic⊗ σ(bi) =
∑
i

ai ⊗ bσ(bi)σ(c),

which amounts to

(Id⊗σ)((σ(b)⊗ 1)g(c⊗ 1)) = (Id⊗σ)((1⊗ c)g(1⊗ σ(b))).

Now this is a consequence of lemma 1.1. Hence ϕ indeed defines a bimodule
morphism, and since g′ is invertible it is an isomorphism.

We still have to verify that ϕ is an isometry from h1 to h2. We have

h2(ϕ(x⊗ y), ϕ(x′ ⊗ y′)) =
∑
i,j

h2((xaiy)⊗ σ(bi), (x
′ajy

′)⊗ σ(bj))

=
∑
i,j

TrdA(biσ(bj))σ(y)σ(ai)σ(x)x′ajy
′

=
∑
i,j,k

σ(y)σ(ai)σ(x)x′ajy
′akbiσ(bj)bk

= ε
∑
i,k

σ(y)σ(ai)σ(x)x′σ(bi)σ(ak)σ(y′)bk

= εσ(y) TrdA(σ(x)x′)εy′

= h1(x⊗ y, x′ ⊗ y′)

using the relations in lemma 1.3.
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1.5 Associativity in a 2-torsion coherent 2-group
We show that the sort of associativity we get in a strongly 2-torsion coherent 2-
group when considering x⊗x⊗x→ x can be generalized to an arbitrary number
of terms. Let P be the free unital (non-associative) magma on a single object
a. There is a unique magma morphism P → N sending a to 1, and the fiber
above some d ∈ N is denoted P (d). An element of P (d) is called a bracketing on
d objects, and can be seen as a choice of order in which to multiply d elements
using a non-necessarily associative binary product. For instance, P (d) has only
one element for d = 0, 1, 2, while P (3) has 2 elements, namely a(aa) and (aa)a.
For any d > 2 and any B ∈ P (d), there are unique di ∈ N∗ and Bi ∈ P (di) (for
i = 1, 2), such that d1 + d2 = d and B = B1B2.

For any object x in a 2-torsion coherent 2-group C, any d ∈ N and any
B ∈ P (d), we define an isomorphism

ϕBx : x⊗d −→
{
x if d is odd
1 if d is even (5)

inductively on d: if d = 0, 1 then ϕBx is the appropriate identity morphism for
the only B ∈ P (d). If B ∈ P (d) for d > 2, then we write B = B1B2. If d1 or d2

is even, then we set
ϕBx = ϕB1

x ⊗ ϕB2
x . (6)

If d1 and d2 are odd, we set

ϕBx = ex ◦ (ϕB1
x ⊗ ϕB2

x ). (7)

In particular, ϕBx = ex when B ∈ P (2).
Then we can rephrase the definition of strong 2-torsion as the fact that for

any object x, ϕBx is independent of the choice of B for the two possible B ∈ P (3).
In general, we get:

Proposition 1.16. Let C be a strongly 2-torsion coherent 2-group. Then for
any d ∈ N, the isomorphism ϕBx is independent of the choice of B ∈ P (d).

Proof. For any d ∈ N, we write Ld ∈ P (d) for the left-associated bracketing on
d elements, corresponding to (· · · ((aa)a) · · · )a). It may be defined inductively
by Ld+1 = Ld · L1 (obviously L0 is the empty bracketing, and L1 = a). We
write ϕ(d)

x = ϕLdx .
We prove by induction on d that ϕBx = ϕ

(d)
x , similarly to how the general-

ized associativity law is proved in a semi-group. For d 6 2 there is only one
bracketing, so the statement is obvious. Now fix some d > 3 and assume the
statement is true for any r < d. Let B be any bracketing on d objects, and
write B = B1B2, with Bi ∈ P (di), di ∈ N∗. Then by induction hypothesis we
have ϕBix = ϕ

(di)
x .

Suppose first that d1 is even. Then ϕBx = ϕ
(d1)
x ⊗ ϕ(d2)

x . If d2 is odd, we get

ϕ(d1)
x ⊗ ϕ(d2)

x = ϕ(d1)
x ⊗ ϕ(d2−1)

x ⊗ ϕ(1)
x

= ϕ
Ld1 ·Ld2−1
x ⊗ ϕ(1)

x

= ϕ(d−1)
x ⊗ ϕ(1)

x

= ϕ(d)
x
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using the induction hypothesis for d − 1, so we are done. If on the other hand
d2 is even:

ϕ(d1)
x ⊗ ϕ(d2)

x = ϕ(d1)
x ⊗ ex ◦ (ϕ(d2−1)

x ⊗ ϕ(1)
x )

= ex ◦ (ϕ(d1)
x ⊗ ϕ(d2−1)

x ⊗ ϕ(1)
x )

= ex ◦ (ϕ
Ld1 ·Ld2−1
x ⊗ ϕ(1)

x )

= ex ◦ (ϕ(d−1)
x ⊗ ϕ(1)

x )

= ϕ(d)
x .

Now suppose d1 is odd. If d2 is odd, then

ϕBx = ex ◦ (ϕ(d1)
x ⊗ ϕ(d2)

x )

= ex ◦ (ϕ(d1)
x ⊗ ϕ(d2−1)

x ⊗ ϕ(1)
x )

= ex ◦ (ϕ
Ld1 ·Ld2−1
x ⊗ ϕ(1)

x )

= ex ◦ (ϕ(d−1)
x ⊗ ϕ(1)

x )

= ϕ(d)
x .

Finally, if d2 is even:

ϕBx = ϕ(d1)
x ⊗ ϕ(d2)

x

= ϕ(d1)
x ⊗ ex ◦ (ϕ(d2−1)

x ⊗ ϕ(1)
x )

= ex ◦ (ϕ(d1)
x ⊗ ϕ(d2−1)

x )⊗ ϕ(1)
x

= ϕ
Ld1 ·Ld2−1
x ⊗ ϕ(1)

x

= ϕ(d−1)
x ⊗ ϕ(1)

x

= ϕ(d)
x

where we finally use that 1⊗ex = ex⊗1, which is the characterization of strong
2-torsion.

Given this result, we can make the following definition:

Definition 1.17. In a strongly 2-torsion coherent 2-group, we write ϕ(d)
x for

ϕBx where B is any bracketing on d objects.

1.6 Additional properties
We now show a few properties of Brh(K) that will be important for the con-
struction of the mixed Witt ring. First note that there is an additional structure
on Brh(K) that does not fit in the definition of a 2-group: for any two mor-
phisms f and f ′ in Brh(K) having the same target (A, σ) and having the same
sign (so they both correspond to ε-hermitian modules for the same ε), then
there is a natural notion of sum f ⊕ f , corresponding to the orthogonal direct
sum of ε-hermitian modules.

Lemma 1.18. Let f, f ′ be two morphisms in Brh(K) having the same target
(B, τ) and of the same sign, and let g : (B, τ)→ (A, σ). Then

(f ⊕ f ′) ◦ g = (f ◦ g)⊕ (f ′ ◦ g).
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Proof. This is immediate since the composition of morphisms in Brh(K) is
defined using the tensor product, which is distributive over direct sums.

There is also a symmetry property that will later imply the commutativity
of our rings.

Proposition 1.19. If A be a central simple algebra over K, then for any right
A-modules V1 and V2, there is a canonical (A⊗K A)-module isomorphism

Σ : V1 ⊗K V2
∼−→ V2 ⊗K V1

v1 ⊗ v2 7−→ (v2 ⊗ v1)gA

such that for any involution σ on A, and any εi-hermitian form hi on Vi (with
respect to σ), Σ is an isometry of ε1ε2-hermitian forms over (A ⊗K A, σ ⊗ σ)
from h1 ⊗ h2 to h2 ⊗ h1.

Proof. The fact that Σ is a module morphism follows from lemma 1.1 since
gA(x⊗ y) = (y ⊗ x)gA. Now to show that it defines an isometry:

(h2 ⊗ h1)(Σ(v1 ⊗ v2),Σ(v′1 ⊗ v′2)) = (h2 ⊗ h1)((v2 ⊗ v1)gA, (v
′
2 ⊗ v′1)gA)

= gAh2(v2, v
′
2)⊗ h1(v1 ⊗ v′1)gA

= h1(v1, v
′
1)⊗ h2(v2, v

′
2)

using that gA is symmetric for σ ⊗ σ (see lemma 1.3) and lemma 1.1.

Finally, there is an obvious compatibility with base change:

Proposition 1.20. Let L/K be any field extension. Then the association
(A, σ) 7→ (AL, σL) and (V, h) 7→ (VL, hL) defines a monoidal functor Brh(K)→
Brh(L), which sends ϕ(d)

(A,σ) to ϕ(d)
(AL,σL).

Proof. Algebras with involution and ε-hermitian modules are compatible with
base change, as is the composition in Brh(K) since it is defined with a tensor
product, and likewise for the monoidal structure. Note that the involution
trace form is also preserved by base change, which implies the statement about
ϕ

(d)
(A,σ).

1.7 A zero object
Up until now, we have excluded zero modules from our exposition. Indeed, they
lack the good invertibility properties we have discussed so far. For instance,
take A a central simple algebra over K, and consider the zero module V = {0}.
Then B = EndA(V ) is the zero ring, so obviously do not get A ' EndB(V ).

On the other hand, it will be convenient at times to be able to consider
zero modules. Notably, we will construct some kind of exterior power operation
on modules, and like in the case of vector spaces these powers vanish above
the module’s dimension. For this reason, we define a slightly bigger category
Brh(K)′, which is obtained from Brh(K) by formally adding a zero object, and
a zero morphism between any two objects (the composition of a zero morphism
with any morphism being the appropriate zero morphism). The zero object
can be interpreted as the zero ring with its trivial involution, and the zero
morphisms are zero bimodules with the trivial hermitian form (which can be
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given either sign). Obviously these are not Morita bimodules, and Brh(K)′ is
not a groupoid.

We will explicitly state in the remaining of the article if we allow the zero
ring and zero morphisms in a statement.

2 The mixed Witt ring of an algebra with invo-
lution

We now want to use the hermitian Morita theory developped in the first section
to define a product such that G̃W (A, σ) and W̃ (A, σ) are commutative graded
rings, as described in the introduction.

2.1 The mixed Witt semi-ring
If one wants to define the usual Witt and Grothendieck-Witt rings of a field K,
it makes sense to start by defining some semi-ring SW (K) (which we may call
the Witt semi-ring of K), saying that SW (K) is the set of isometry classes of
symmetric (non-degenerated) bilinear forms over K, endowed with orthogonal
direct sums, and tensor products. Then the Grothendieck-Witt ring GW (K) is
the Grothendieck ring of SW (K), and W (K) is the quotient of GW (K) by the
ideal of hyperbolic forms.

We can also define SW−(K) as the additive semi-group of isometry classes
of anti-symmetric bilinear forms over K, with Grothendieck group GW−(K).
Then SW±(K) = SW (K) ⊕ SW−(K) is a semi-ring, with Grothendieck ring
GW±(K) = GW (K)⊕GW−(K). This ring scarcely appears in the litterature
since GW−(K) is very uninteresting over fields of characteristic not 2, but we
will need it for our construction. The corresponding quotient by hyperbolic
forms is still W (K) (we may write that W−(K) = 0). Obviously SW±(K) is
graded over Z/2Z, and the grading is inherited by GW±(K).

We want to adapt these constructions to the context of algebras with invo-
lutions.

Definition 2.1. Let (A, σ) be an algebra with involution over K. Then we
define for ε = ±1 the commutative additive semi-group SW ε(A, σ) to be the
set of isometry classes of regular ε-hermitian modules over (A, σ), with the
orthogonal direct sum. We often write SW (A, σ) for SW+(A, σ). We also
write SWε(A, σ) for the isometry classes of hermitian modules of type ε (so
SW ε(A, σ) = SWε(A, σ) iff σ is orthogonal).

We then set

SW±(A, σ) = SW (A, σ)⊕ SW−(A, σ) = SW+(A, σ)⊕ SW−(A, σ)

S̃W (A, σ) = SW±(K)⊕ SW±(A, σ).

Remark 2.2. The set SW (A, σ) ∪ SW−(A, σ) is the set of morphisms to
(A, σ) in Brh(K) (so in other words it is the set of objects of the slice cat-
egory Brh(K)/(A,σ)). There is a natural way to define the sum of elements of
SW (A, σ) and SW−(A, σ), namely the orthogonal sum as sesquilinear spaces,
but we do not want to use this operation since the resulting sum is neither her-
mitian nor anti-hermitian, and thus does not have an adjoint involution (or to
put it differently it is not a morphism in Brh(K)).
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Remark 2.3. We can also define SW ε(A, σ)′ = SW ε(A, σ)∪ {0}, the additive
monoid obtained by formally adding a neutral element. Then SW (A, σ)′ ∪
SW−(A, σ)′ is the set of morphisms to (A, σ) in the larger category Brh(K)′.
Since want to avoid zero modules as much as possible we usually use SW ε(A, σ),
which is just a semi-group instead of a monoid.

We already have a structure of semi-ring on SW±(K), and the usual tensor
product induces an obvious structure of SW±(K)-module on S̃W (A, σ). To
make S̃W (A, σ) a semi-ring, it is then enough to define the product of an element
of SW ε(A, σ) and an element of SW ε′(A, σ).

Definition 2.4. Let (A, σ) be a central simple algebra with involution of the
first kind over K, and for i = 1, 2 let (Vi, hi) ∈ SW εi(A, σ). Then we define

(V1, h1) · (V2, h2) = (V1 · V2, h1 · h2) ∈ SW ε1ε2(K)

by the following composition in Brh(K) :

(V1 · V2, h1 · h2) = (A, Tσ) ◦ (V1 ⊗K V2, h1 ⊗ h2).

Remark 2.5. The K-vector space V1 · V2 is independent of h1 and h2, but it
does depend on σ. Precisely, unwrapping the definition 1.6, we have

V1 · V2 = (V1 ⊗K V2)⊗A⊗KA A (8)

where the left action of A ⊗K A on A is given by the twisted sandwich action
through σ (see 2).

Remark 2.6. Still unwrapping 1.6, and using formula (3) for the composition
of hermitian forms, and (4) for the definition of Tσ, we find the explicit formula

(h1 · h2)(u1 ⊗ u2 ⊗ a, v1 ⊗ v2 ⊗ b) = TrdA (σ(a)h1(u1, v1)bσ(h2(u2, v2))) . (9)

Now we have defined a product x · y for any x and y that are elements of
one of the four components of S̃W (A, σ), whch gives by obvious extension by
bilinearity a binary product on S̃W (A, σ).

Proposition 2.7. Equipped with the product defined above, S̃W (A, σ) is a com-
mutative semi-ring.

Proof. For commutativity, clearly it is enough to show x · y = y · x when x and
y are in one of the four components of S̃W (A, σ). If x or y is in SW±(K) then
this is clear by the basic properties of the tensor product (or if we want to give
a more fancy answer, it follows from the fact that (K, Id) is the unit element in
the monoidal category Brh(K)). When x ∈ SW ε1(A, σ) and y ∈ SW ε2(A, σ),
it is a direct consequence of proposition 1.19.

For distributivity, once again it is clearly enough to consider to show that
x(y + z) = xy + xz when x, y and z are in components of S̃W (A, σ) (with
y and z in the same component). Again, the result is obvious if one of those
components is SW (K) or SW−(K) by the usual properties of tensor products,
and in the remaining cases it is an immediate corollary of lemma 1.18.

It remains to show associativity. Here also we are readily reduced to showing
x1(x2x3) = (x1x2)x3 where xi ∈ SW εi(A, σ). Now this follows from the fact
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that Brh(K) is strongly 2-torsion (theorem 1.15). Indeed, (x1 ⊗ x2) ⊗ x3 '
x1 ⊗ (x2 ⊗ x3) as ε1ε2ε3-hermitian modules over (A⊗3, σ⊗3), and x1(x2x3) and
(x1x2)x3 are obtained by composing this morphism inBrh(K) with either ϕB(A,σ)

or ϕB
′

(A,σ) where B and B′ are the two bracketings on 3 objects; but as we
observed just before the proof of proposition 1.16, the characterization of strong
2-torsion is precisely that ϕB(A,σ) = ϕB

′

(A,σ), so indeed the product is associative.

2.2 Functoriality and grading
Given any morphism f : (B, τ) → (A, σ) is Brh(K), there is a natural in-
duced map f∗ : S̃W (B, τ) → S̃W (A, σ), which is the identity on the SW±(K)
component, and which is the composition with f on the components SW (B, τ)
and SW−(B, τ), recalling that their elements are by definition morphisms in
Brh(K) with destination (B, τ).

Example 2.8. We can describe the action of f∗ on elementary diagonal forms,
that is forms of the type 〈a〉τ for a ∈ B∗ ε-symmetric. Suppose f represents the
module (V, h) over (A, σ). Then f∗(〈a〉τ ) has underlying space B ⊗B V , which
is canonically V , and the hermitian form is

V × V −→ A
(x, y) 7−→ h(x, ay).

Remark 2.9. In particular, f∗(〈1〉τ ) = f . Thus the semi-rings S̃W (A, σ)
all have a distinguished element 〈1〉σ ∈ SW (A, σ), and any element of any
SW ε(A, σ) can be put in correspondence with some 〈1〉τ for some (B, τ) by an
appropriate f∗ (and actually f is given by the element itself).

Example 2.10. Now suppose f = 〈a〉σ is itself diagonal. Then it is a morphism
(A, σa)→ (A, σ) in Brh(K), where σa(x) = a−1σ(x)a. If (V, h) is a ε-hermitian
module over (A, σa), then f∗(V, h) has underlying module V ⊗AA ' V , and the
form is

V × V −→ A
(x, y) 7−→ h(xa, y).

There is an obvious Z/2Z-grading on the semi-ring S̃W (A, σ), where the even
component is SW (K)±, and the odd component is SW±(A, σ). Now there are
two natural ways to extend this to a Γ-grading where Γ = (Z/2Z)2 is the Klein
group. On SW±(K), there is not really a choice since SW (K) must be the
neutral component. But on SW±(A, σ), we can attribute the grading according
to the sign or to the type.

Notice that according to remark 1.9, if the sign of f : (B, τ) → (A, σ) is ε,
then f∗(SW ε′(B, τ)) = SW εε′(A, σ), while on the other hand f∗(SWε′(B, τ)) =
SWε′(A, σ). So if we want f∗ to preserve the Γ-gradings, we have to choose
the type grading (the sign grading is only preserved by hermitian morphisms,
and not anti-hermitian ones). The component corresponding to (1, 0) ∈ Γ will
then be the orthogonal component (namely SW+(A, σ)), and the component
corresponding to (1, 1) ∈ Γ will be the symplectic one (namely SW−(A, σ)).

So our choice of grading is such that f∗ is a morphism of Γ-graded semi-
groups, and we want to show that it is actually a morphism of semi-rings.
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Before that, we show an intermediary result which is stronger than we need for
now but will be useful later on. Recall from 1.17 the definition of ϕ(d)

(A,σ).

Proposition 2.11. Let f : (B, τ) −→ (A, σ) be a morphism in Brh(K). For
any d ∈ N we have a commutative square in Brh(K):

(B⊗d, τ⊗d) (A⊗d, σ⊗d)

(B, τ) (A, σ)

f⊗d

ϕ
(d)

(B,τ)
ϕ

(d)

(A,σ)

f

if d is odd, and

(B⊗d, τ⊗d) (A⊗d, σ⊗d)

(K, Id) (K, Id)

f⊗d

ϕ
(d)

(B,τ)
ϕ

(d)

(A,σ)

Id

if d is even.

Proof. If d = 0, all four arrows are the identity, and if d = 1 the horizontal arrows
are the same, while the vertical arrows are the identity. From the construction
of ϕ(d)

(A,σ), it is easy to see that the case where d > 2 reduces by induction to
d = 2, meaning that we have to construct an isometry between the modules
corresponding to ϕ(2)

(A,σ) ◦ f
⊗2 and ϕ(2)

(A,σ).
If f corresponds to the ε-hermitian module (V, h), then we define the follow-

ing (B ⊗K B)-K-bimodule morphism:

ψ : (V ⊗K V )⊗A⊗KA A −→ B
(v ⊗ w)⊗ a 7−→ ϕh(va⊗ w).

where ϕh : V ⊗K V → B corresponds to the canonical identification V ⊗AV ∗ →
B (see section 1.1 or [11, 5.1]), and is given, identifying B = EndA(V ), by

ϕh(v ⊗ w)(x) = vh(w, x).

Then ψ is well-defined since for x, y ∈ A:

ψ((v ⊗ w)⊗ (xaσ(y)) = ϕh(vxaσ(y)⊗ w)

= ϕh(vxa⊗ wy)

= ψ((vx⊗ wy)⊗ a),

and it is a bimodule morphism since for x, y ∈ B:

ψ((xv ⊗ yw)⊗ a) = ϕh(xva⊗ yw)

= xϕh(va⊗ v)τ(y)

because the canonical identification V ⊗A V ∗ ' B is a B-B-bimodule isomor-
phism.

To show that ψ is an isometry, we must establish equality between on the
one hand

TrdB (τ (ψ((v ⊗ w)⊗ a)) · ψ(((v′ ⊗ w′)⊗ b)))
= TrdB (τ(ϕh(va⊗ w)) · ϕh(v′b⊗ w′))
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and on the other hand

TrdA (σ(a)(h⊗ h)(v ⊗ w, v′ ⊗ w′) · b)
= εTrdA(σ(a)h(v, v′)bh(w′, w)).

Now applying successively the formulas in theorem [11, 5.1], we get:

TrdB (τ(ϕh(va⊗ w)) · ϕh(v′b⊗ w′))
= εTrdB (ϕh(w ⊗ va) · ϕh(v′b⊗ w′))
= εTrdB (ϕh(wh(va, v′b)⊗ w′))
= εTrdA (h(w′, wh(va, v′b)))

= εTrdA (h(w′, w)σ(a)h(v, v′)b) .

We can finally state:

Proposition 2.12. The association (A, σ) 7→ S̃W (A, σ) and f 7→ f∗ defines a
functor

S̃W : Brh(K) −→ ComSemRingΓ

where ComSemRingΓ is the category of commutative Γ-graded semi-rings.

Proof. Since f∗ is defined by composition with f , it is clear that S̃W is at least
a functor to the category of sets. The fact that f∗ preserves the sum is a direct
consequence of lemma 1.18, and the fact that it preserves the Γ-grading has
been discussed above.

Thus it remains to show that f∗ is compatible with the product. As always
we can reduce to the case of homogeneous elements, and we have to prove that
for f : (B, τ)→ (A, σ) having sign ε, the following diagram commutes:

SW ε1(B1, τ1)× SW ε2(B2, τ2) SW ε′1(A1, σ1)× SW ε′2(A2, σ2)

SW ε1ε2(B1 ⊗K B2, τ1 ⊗ τ2) SW ε′1ε
′
2(A1 ⊗K A2, σ1 ⊗ σ2)

SW ε1ε2(B3, τ3) SW ε′1ε
′
2(A3, σ3).

where for i = 1, 2, 3 we have either (Bi, τi) = (B, τ) and (Ai, σi) = (A, σ), and
in this case ε′i = εεi, or (Bi, τi) = (Ai, σi) = (K, Id), and in this case ε′i = εi.
The horizontal maps are the obvious ones depending on the case, induced by f .

Now the top square always commutes because of basic properties of the
tensor product, and the bottom square is easily seen to commute if one of the
Bi is K. So we need to show that the bottom square commutes in the following
configuration:

SW ε1ε2(B ⊗K B, τ ⊗ τ) SW ε1ε2(K)

SW ε1ε2(A⊗K A, σ ⊗ σ) SW ε1ε2(K)

which is a direct consequence of proposition 2.11.
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Example 2.13. Since S̃W is a functor, any automorphism of (A, σ) in Brh(K)

induces an automorphism of S̃W (A, σ); we call such an automorphism standard.
Recall from remark 1.8 that the automorphisms of (A, σ) are the 〈λ〉σ where λ ∈
K∗. Then according to example 2.10, the associated standard automorphism is
the identity on SW±(K), and the multiplication by 〈λ〉 on SW±(A, σ). It is
easy to check directly that this is indeed an automorphism.

Remark 2.14. SinceBrh(K) is a groupoid, this means that all induced maps f∗
are isomorphisms. Now seeing that (A, σ) and (B, τ) are isomorphic in Brh(K)

iff A and B are Brauer-equivalent, we can conclude that S̃W (A, σ) only depends
on the Brauer class of A, up to a graded semi-ring isomorphism. Thus we
may if necessary reduce to the study of division algebras with involution: if
D is the division algebra equivalent to A, and if θ is any involution on D,
then S̃W (A, σ) ≈ S̃W (D, θ); but note that the isomorphism is non-canonical.
Precisely, it is determined up to a standard automorphism of S̃W (D, θ).

Remark 2.15. This functorial behaviour, which is very useful, is the main jus-
tification for the definition of a four-component mixed Witt semi-ring. It might
have been more intuitive to define either S̃W

ε
(A, σ) = SW (K)⊕SW ε(A, σ) or

S̃W ε(A, σ) = SW (K) ⊕ SWε(A, σ). But in the first case, we only get functo-
riality with respect to hermitian morphisms, so in particular the ring depends
not only on the Brauer class of A but also on the type of σ. In the second case,
we do get a full functoriality, and the ring only depends on [A], but on the other
hand it prevents us from working with hermitian forms over any kind of invo-
lutions (we have to work with hermitian or anti-hermitian forms according to
the type of the involution). This 4-component semi-ring is a good compromise
which affords full freedom, despite being a little more cumbersome.

2.3 The mixed Grothendieck-Witt ring
Now that we have defined the mixed Witt semi-ring of an algebra with invo-
lution, we may use it to define the rings that are of more direct interest to
us.

Note that Witt’s cancellation theorem holds over algebras with involution,
which means that S̃W (A, σ) is an additive semi-group with cancellation (see
[10, 6.3.4] for the case of division algebras, which is enough by remark 2.14).

Definition 2.16. Let (A, σ) be an algebra with involution over K. Then the
mixed Grothendieck-Witt ring G̃W (A, σ) is the Grothendieck ring of S̃W (A, σ).

We also write GW ε(A, σ) and GWε(A, σ) for the Grothendieck groups of
SW ε(A, σ) and SWε(A, σ) respectively, so that

G̃W (A, σ) = GW (K)⊕GW−(K)⊕GW (A, σ)⊕GW−(A, σ)

= GW (K)⊕GW−(K)⊕GW+(A, σ)⊕GW−(A, σ).

Remark 2.17. In [13], Lewis makes a very similar construction in the case
where A = Q is a quaternion algebra and σ = γ is its canonical involution.
His definition is essentially the same, except that he uses the norm form of Q
instead of the involution trace form. Since the two forms are the same up to
a factor 〈2〉, this yields naturally isomorphic rings. However, the norm form is
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a special feature of quaternion algebras (in general for an algebra of degree n
the reduced norm is a homogeneous polynomial function of degree n), so the
construction does not generalize well. Furthermore, no proof of the associativity
of the product is given in [13] (even though it is far from obvious).

Thus the mixed Grothendieck-Witt ring G̃W (A, σ) is a commutative Γ-
graded ring. From the formal properties of Grothendieck rings and proposition
2.12, we easily deduce:

Theorem 2.18. The functor S̃W extends naturally to a functor

G̃W : Brh(K) −→ ComRingΓ

where ComRingΓ is the category of Γ-graded commutative rings.

As before, this implies in particular that up to (non-canonical) isomorphism,
G̃W (A, σ) only depends on the Brauer class of A. Likewise, G̃W ε(A, σ) =
GW (K)⊕GWε(A, σ) is a commutative Z/2Z-graded ring, that is functorial in
(A, σ) (relative to the category Brh(K)), and thus only depends on [A] up to
isomorphism.

Remark 2.19. Given the pre-existingGW±(K)-module structure on G̃W (A, σ),
we could have defined its ring structure as the unique one such that G̃W is a
functor from Brh(K) to Γ-graded GW±(K)-algebras with 〈1〉2σ = Tσ.

2.4 The mixed Witt ring
To define the mixed Witt ring, we first need to discuss hyperbolic forms. Since
we assumed that char(K) 6= 2, this is the same as metabolic forms, so we
may characterize a hyperbolic ε-hermitian module (V, h) by the existence of a
submodule U ⊂ V such that U⊥ = U (which is called a Lagrangian of (V, h)).
In particular, any element of SW−(K) is hyperbolic, as is well known. We call
an element of S̃W (A, σ) hyperbolic if each of its homogeneous component is
hyperbolic, and an element of G̃W (A, σ) is hyperbolic if it is the difference of
two hyperbolic elements of S̃W (A, σ).

Proposition 2.20. Let (A, σ) be an algebra with involution over K. Then the
hyperbolic elements form a homogeneous ideal in G̃W (A, σ).

Furthermore, if f : (B, τ)→ (A, σ) is a morphism in Brh(K), then f∗ sends
hyperbolic elements of G̃W (B, τ) to hyperbolic elements of G̃W (A, σ).

Proof. We start by proving the second statement. We show that for any mor-
phisms f and g inBrh(K), if g is hyperbolic and f◦g exists, then it is hyperbolic.
If g is represented by (V, h) and f by (W,h′), then by hypothesis we have U ⊂ V
such that U⊥ = U . Now it is easy to see that U ⊗W ⊂ V ⊗W is a Lagrangian
for the form h′ ◦ h.

For the first statement, it is clear by definition that a sum of hyperbolic
elements is hyperbolic, and that hyperbolicity may be checked component-wise.
Let, for = 1, 2, (Vi, hi) be a εi-hermitian module over (Ai, σi) where (Ai, σi) is
either (A, σ) or (K, Id). Then if U ⊂ V1 is a Lagrangian, it is easy to see that
U ⊗K V2 is a Lagrangian in (V1⊗K V2, h1⊗ h2), which is then hyperbolic. Now
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according to the point proved above, the product (V1, h1) · (V2, h2) in G̃W (A, σ)
is hyperbolic since it is obtained from the tensor product by composition with
some morphism in Brh(K).

Me may now define:

Definition 2.21. Let (A, σ) be an algebra with involution of over K. Then the
mixed Witt ring W̃ (A, σ) of (A, σ) is the quotient of G̃W (A, σ) by the ideal of
hyperbolic elements.

It is a commutative Γ-graded ring, and we write its homogeneous decompo-
sition as

W̃ (A, σ) = W (K)⊕W (A, σ)⊕W−(A, σ)

= W (K)⊕W+(A, σ)⊕W−(A, σ).

Note that the component corresponding to (0, 1) ∈ Γ is trivial, since all
anti-symmetric forms over K are hyperbolic (in other words W−(K) = 0).

From proposition 2.20 and theorem 2.18, we immediately deduce:

Theorem 2.22. The functor G̃W naturally induces to a functor

W̃ : Brh(K) −→ ComRingΓ

where ComRingΓ is the category of Γ-graded commutative rings.

As before, we also have functors defined by W̃ε(A, σ) = W (K)⊕Wε(A, σ).

2.5 Scalar extension and reciprocity
Scalar extension is a standard tool in the theory of algebras with involution,
in particular when extending the scalars to a splitting field to reduce to the
classical theory of bilinear forms over fields.

Proposition 2.23. Let L/K be any field extension. For any algebra with in-
volution (A, σ) over K, the canonical functor Brh(K) → Brh(L) described in
proposition 1.20 induces graded (semi-)ring morphisms S̃W (A, σ)→ S̃W (AL, σL),
G̃W (A, σ)→ G̃W (AL, σL) and W̃ (A, σ)→ W̃ (AL, σL).

Proof. For S̃W , the operations are preserved since direct sums and tensor prod-
ucts are compatible with scalar extension, and we noted in proposition 1.20 that
ϕ

(d)
(A,σ) was also preserved, which shows that the product in S̃W (A, σ) is com-

patible with scalar extension. For the grading, we just have to notice that the
type of an involution is also stable under scalar extension.

The result then follows for G̃W by universal property, and for W̃ since
hyperbolic forms are clearly stable under base change.

Recall that an étale K-algebra is a finite product of finite separable field
extensions of K. If L/K is an étale algebra (for instance a separable field
extension), then it is known ([10, I.7.2,I.7.3.2]) that the trace map TrL/K : L→
K induces a group morphism

(TrL/K)∗ : GW (L) −→ GW (K)
(V, b) 7−→ (V,TrL/K ◦b)

(10)

23



which sends 〈1〉L to the so-called trace form TL/K ∈ GW (K):

TL/K : L× L −→ K
(x, y) 7−→ TrL/K(xy)

(and the fact that this is a non-degenerated bilinear form is a characterization
of étale algebras). The classical Frobenius reciprocity theorem (see [21, 2.5.6]
for the case of a field extension) states that this is actually a GW (K)-module
morphism, where GW (L) is seen as a GW (K)-module through the natural map
GW (K)→ GW (L). It is easy to see that the trace map sends hyperbolic forms
to hyperbolic forms, so it induces a morphism

(TrL/K)∗ : W (L) −→W (K) (11)

which is a W (K)-module morphism. We want to generalize this result to mixed
Witt rings.

Assume for simplicity that L/K is a finite separable field extension. Then
the trace also gives a K-linear map

TrAL/A : AL
IdA⊗TrL/K−−−−−−−−→ A. (12)

We need some compatibility with the reduced trace:

Lemma 2.24. Let a, b ∈ A and z ∈ (A⊗K A)L. Then

TrdA(a(Tr(A⊗KA)L/A⊗KA(z) · b)) = TrL/K(TrdAL((a⊗ 1)(z · b)))

where A⊗K A acts on A through the twisted action induced by σ (see (2)).

Proof. By K-linearity, we may assume that z = x ⊗ y ⊗ λ with x, y ∈ A and
λ ∈ L. The equation then becomes

TrdA(aTrL/K(λ)xbσ(y)) = TrL/K(TrdAL(axbσ(y)⊗ λ))

which is clear since in general for any e ∈ A:

TrL/K(TrdAL(e⊗ λ)) = TrL/K(λ) TrdA(e).

The linear map (12) induces a group morphism

(TrAL/A)∗ : GW ε(AL, σL) −→ GW ε(A, σ)
(V, h) 7−→ (V,TrAL/A ◦b).

(13)

It is also easy to see that it sends hyperbolic forms to hyperbolic forms, so
it defines graded group morphisms

(TrAL/A)∗ : G̃W (AL, σL) −→ G̃W (A, σ) (14)

and
(TrAL/A)∗ : W̃ (AL, σL) −→ W̃ (A, σ). (15)

Proposition 2.25 (Frobenius reciprocity). If we see G̃W (AL, σL) as a G̃W (A, σ)-
module through the scalar extension map, then the trace map (14) is a G̃W (A, σ)-
module morphism. Likewise, the trace map (15) is a W̃ (A, σ)-module morphism.
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Proof. First, note that clearly it is enough to prove this for G̃W , the case of
W̃ being an easy consequence, using that hyperbolic forms are preserved by the
trace map.

We have to check that for x ∈ G̃W (A, σ), y ∈ G̃W (AL, σL), we have

(TrAL/A)∗(xL · y) = x · (TrAL/A)∗(y).

Of course it is only necessary to check this when x and y are homogeneous and
represent ε-hermitian forms. So take (A1, σ1) and (A2, σ2) to each be either
(A, σ) or (K, Id), and write (A3, σ3) for either (A, σ) or (K, Id), so that we have
a canonical isomorphism

(A1, σ1)⊗K (A2, σ2)
f−→ (A3, σ3)

in Brh(K) given either by the fact that (K, Id) is the unit element of Brh(K),
or by f = ϕ

(2)
(A,σ) (when A1 = A2 = A). Then to conclude we need to show that

the following outer diagram commutes:

GW ε1(A1, σ1)⊗GW ε2((A2, σ2)L)

GW ε1((A1, σ1)L)⊗GW ε2((A2, σ2)L) GW ε1(A1, σ1)⊗GW ε2(A2, σ2)

GW ε1ε2((A1 ⊗K A2, σ1 ⊗ σ2)L) GW ε1ε2(A1 ⊗K A2, σ1 ⊗ σ2)

GW ε1ε2((A3, σ3)L) GW ε1ε2(A3, σ3).

extL ⊗ 1 1⊗ (Tr(A2)L/A2
)∗

(Tr(A1⊗KA2)L/A1⊗KA2
)∗

(Tr(A3)L/A3
)∗

(fL)∗ f∗

Independently of the particular values of A1 and A2, it is not difficult to see
that the top pentagon commutes, extending the proof of the classical case (where
A1 = A2 = K). Indeed, take (V1, h1) a ε1-hermitian module over (A1, σ1), and
(V2, h2) a ε2-hermitian module over (A2, σ2)L. Then the natural map

(V1 ⊗K L)⊗L V2 −→ V1 ⊗K V2

(x⊗ λ)⊗ y 7−→ x⊗ (λy)

is an module isomorphism over

(A1 ⊗K L)⊗L (A2 ⊗K L) ' A1 ⊗K A2 ⊗K L,

and we see that it is an isometry between (IdAL ⊗TrAL/A) ◦ ((h1⊗ 1)⊗h2) and
h1 ⊗ (TrAL/A ◦h2) under this identification.

When A1 or A2 is K, the bottom square is clearly commutative by the usual
compatibilities of tensoring with K. It remains to show that is commutes when
A1 = A2 = A, so A3 = K and f = (A, Tσ), which gives:

GW ε((A⊗K A, σ ⊗ σ)L) GW ε(A⊗K A, σ ⊗ σ)

GW ε(L) GW ε(K).

(Tr(A⊗KA)L/A⊗KA)∗

(TσL )∗ (Tσ)∗

(TrL/K)∗
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Let (V, h) be a ε-hermitian module over (A ⊗K A, σ ⊗ σ)L. Then we have
to find an isometry between the K-bilinear spaces (U, β) and (W,β′) where
U = V ⊗A⊗KA A and W = V ⊗AL⊗LAL AL, with

β(u⊗ a, v ⊗ b) = TrdA
(
σ(a)(Tr(A⊗KA)L/A⊗KA(h(u, v)) · b)

)
and

β′(u⊗ a⊗ λ, v ⊗ b⊗ µ) = TrL/K (TrdAL((σ(a)⊗ λ)(h(u, v) · (b⊗ µ)))) .

Now if we consider the following K-linear map

Φ : V ⊗A⊗KA A −→ V ⊗AL⊗LAL AL
v ⊗ a 7−→ v ⊗ (a⊗ 1),

then β′(Φ(u ⊗ a),Φ(v ⊗ b)) = β(u ⊗ a, v ⊗ b) is a direct application of lemma
2.24 with z = h(u, v).

Remark 2.26. In particular, the image of the trace map is an ideal in G̃W (A, σ)

(resp. W̃ (A, σ)), which as in the classical case we call the trace ideal (relative
to L/K).

2.6 The split case
The rings we defined have an interesting description when (A, σ) = (K, Id),
which through Morita equivalence is useful whenever A is split. Indeed, we
have by construction

G̃W (K, Id) = GW±(K)⊕GW±(K)

W̃ (K, Id) = W (K)⊕W (K),

so the even and the odd components are identical. Furthermore, since the rings
are Γ-graded, the even components are naturally Z/2Z-graded rings (it is a little
less natural for the case of W̃ (K, Id) since the component W−(K) is trivial).

Proposition 2.27. The ring G̃W (K, Id) (resp. W̃ (K, Id)) is canonically iso-
morphic to the group ring GW±(K)[Z/2Z] (resp. W (K)[Z/2Z]) as Γ-graded
rings.

Proof. This follows easily from the definition of the product in G̃W (K, Id) and
the fact that ϕ(d)

(K,Id) is essentially the identity of (K, Id) in Brh(K), so that

even for the orthogonal and symplectic components of G̃W (K, Id), the product
is simply given by the tensor product, as in GW±(K).

2.7 Twisted involution trace forms
Now that we have established the formal properties of our rings, we would like
to be able to perform explicit computations. Obviously we can compute any
product if we can describe products of homogeneous elements in S̃W (A, σ), and
a quick examination of the cases shows that only products xy ∈ SW (K) with
x, y ∈ SW ε(A, σ) are difficult to compute. It is natural to specialize to the
case where x and y are diagonal, and by bilinearity we just need to describe a
product 〈a〉σ〈b〉σ.
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Proposition 2.28. Let (A, σ) be an algebra with involution over K. Let a and
b be ε-symmetric invertible elements of A. Then in S̃W (A, σ) we have:

〈a〉σ〈b〉σ = Tσ,a,b

where Tσ,a,b is the symmetric bilinear form given by

A×A −→ K
(x, y) 7−→ TrdA(σ(x)ayσ(b)).

In particular, 〈1〉σ〈a〉σ = Tσ,a, where Tσ,a = Tσ,1,a is the so-called twisted
involution trace form (see [11, §11]).

Proof. From remarks 2.5 and 2.6 we have 〈a〉σ〈b〉σ defined on (A⊗KA)⊗A⊗KAA,
and it sends (x⊗ y ⊗ z, x′ ⊗ y′ ⊗ z′) to TrdA (σ(z)(σ(x)ax′)z′σ(σ(y)by′)). If we
identify (A⊗K A)⊗A⊗KAA to A by a 7→ (1⊗ 1)⊗ a, then we find the expected
formula, taking x = x′ = y = y′ = 1.

Example 2.29. In particular, 〈1〉2σ = Tσ, which of course follows directly from
the definition of the product. The idea that Tσ represents in some sense the
“square” of the involution σ has appeared in the literature in various forms, for
instance in the definition of the signature of an involution (we explore this in
more details in section 6). Our construction gives some solid ground to this
idea.

Remark 2.30. Proposition 2.28 can theoretically be used to compute any
product of ε-hermitian forms: if h, h′ ∈ SW ε(A, σ), choose any involution θ
on the division algebra D in the Brauer class of A, and choose some hermi-
tian form f over (D, θ) such that σ = σf . Then f∗(h) = 〈a1, . . . , an〉θ, and
f∗(h

′) = 〈b1, . . . , bm〉θ, so h · h′ =
∑
i,j Tθ,ai,bj (and of course this quadratic

form is independent of the choice of f).

Corollary 2.31. Let (A, σ) be an algebra with involution over K, and let (V, h)
and (V, h′) be ε-hermitian forms over (A, σ). Setting B = EndA(V ) and τ = σh,
there is a unique a ∈ B∗ such that, for all x, y ∈ V , h′(x, y) = h(x, ay). Then
τ(a) = a and

h · h′ = Tτ,a.

In particular, h2 = Tτ .

Proof. The element a ∈ B is by definition the A-morphism V → V given by
ĥ−1 ◦ ĥ′, which proves its existence and unicity. The fact that h′ is ε-hermitian
implies that τ(a) = a: indeed, we have h′(y, x) = εσ(h′(x, y)) = h(ay, x) but
also h′(y, x) = h(y, ax) = h(τ(a)y, x), and this since this true for all x and y,
τ(a) = a.

Let f : (B, τ)→ (A, σ) be the morphism in Brh(K) corresponding to (V, h).
Then f∗(〈1〉τ ) = (V, h), and f∗(〈a〉τ ) = h′ (see example 2.8). Thus since f∗ is a
ring morphism we find h · h′ = 〈1〉τ · 〈a〉τ = Tτ,a.

This means that we can reinterpret twisted involution forms as being exactly
the products of ε-hermitian forms having the same dimension. These computa-
tions show that understanding the product in G̃W (A, σ) and W̃ (A, σ) amounts
to understanding twisted involution trace forms (usually for involutions different
from σ). In section 3 we give some examples of explicit computations in some
cases involving crossed products, notably for quaternion algebras.
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2.8 The dimension map
There is an obvious map dim : SW (K) → N that sends a quadratic space to
its dimension, which extends to a ring morphism GW (K) → Z. It naturally
induces a commutative diagram of rings

GW (K) Z

W (K) Z/2Z.

dim

dim2

The morphism dim2 : W (K)→ Z/2Z has a special importance in the theory
of quadratic forms, mainly through its kernel I(K), which is called the fun-
damental ideal of W (K). The filtration In(K) of W (K) is in turn called the
fundamental filtration. Amongst the most striking results in quadratic form
theory, the Arason-Pfister Hauptsatz implies that the fundamental filtration is
separated (meaning

⋂
n I

n(K) = 0, see [12, X.5.2]), and the Milnor conjecture
(proved by Voevodsky in [22]) states that the associated graded ring is the coho-
mology ring H∗(K,Z/2Z). To alleviate the notations, for the rest of this section
we will write H∗(K) for H∗(K,Z/2Z).

Let (A, σ) be an algebra with involution overK. Then the map SW (K)→ N
extends to

r̃dim : S̃W (A, σ) −→ N[Γ]

called the (graded) dimension map, sending a ε-hermitian module to its reduced
dimension (with the appropriate grading).

Proposition 2.32. Let (A, σ) be an algebra with involution over K. The di-
mension map is a Γ-graded semi-ring morphism, that induces a commutative
diagram of Γ-graded rings

G̃W (A, σ) Z[Γ]

W̃ (A, σ) Z/2Z[Γ].

r̃dim

r̃dim2

Proof. By definition, the dimension map sends homogeneous component to ho-
mogeneous component. Since the reduced dimension of a direct sum (resp. a
tensor product) of modules is the sum (resp. product) of the reduced dimen-
sions, it defines a semi-ring morphism S̃W (A, σ) → N[Γ], which by universal
property extends uniquely to a (graded) ring morphism G̃W (A, σ)→ Z[Γ].

Since hyperbolic modules have even reduced dimension, the map G̃W (A, σ)→
Z/2Z[Γ] factors through W̃ (A, σ).

If we compose with the augmentation map Z[Γ] → Z, we get a ring mor-
phism rdim : G̃W (A, σ) → Z we call the total dimension map. It induces a
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commutative diagram of rings:

GW (K) G̃W (A, σ) Z

W (K) W̃ (A, σ) Z/2Z.

rdim

rdim2

3 Crossed products and twisted trace forms

We saw in corollary 2.31 that computing products in W̃ (A, σ) amounts to com-
puting twisted involution trace forms (potentially for other algebras with invo-
lution). Although they have a very simple definition, these quadratic forms are
usually difficult to actually compute. In this section, we give some results in
very special cases, namely we give an explicit description of Tσ,a when (A, σ) is
a crossed product with involution and a is one of the generators of the crossed
product (proposition 3.12).

3.1 Galois algebras
Our notion of crossed product is slightly more general than the one often found in
literature (but less general than some other versions), in the sense that we allow
G-Galois algebras instead of only Galois field extensions. This has the advantage
to be compatible with separable base change, and it would be necessary if we
wanted to consider unitary involutions (though we limit ourselves to involutions
of the first kind here to stay coherent with the rest of the article). We give a
brief review on these algebras, based on [11, 18.B].

Let G be a finite group. Then recall that a G-Galois algebra over K is an
étale K-algebra (thus a finite product of finite separable field extensions of K)
endowed with an action of G by K-automorphisms, such that LG = K and
|G| = dimK(L).

Example 3.1. Clearly, any Galois field extension L/K is a Gal(L/K)-Galois
algebra, and any G-Galois algebra structure on L is given by some isomorphism
G ' Gal(L/K).

Any G-Galois algebra can be constructed from a Galois field extension in an
elementary way.

Definition 3.2. Let M be any K-algebra, and let H be a group acting on M
by K-automorphisms. Then if H ⊂ G, we define the induced algebra

IndGH(M) = HomH(G,M)

where G and M are naturally viewed as left H-sets. Its K-algebra structure
is given pointwise by that of M , and we have a left action of G on IndGH(M)
induced by the right action of G on itself: (g · f)(x) = f(xg).

Note that as a K-algebra, we have IndGH(M) ≈M [G:H], though the isomor-
phism is not canonical and requires a choice of representatives of classes in G/H.
Then we can state:
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Proposition 3.3. Let M/K be a H-Galois algebra, and let G be a finite group
with H ⊂ G. Then IndGH(M) is a G-Galois algebra, isomorphic as a K-algebra
to M [G:H].

Furthermore, let L/K be a G-Galois algebra. Then there exists a unique
H ⊂ G and a unique H-Galois field extension M/K such that L = IndGH(M).

Proof. This is a paraphrase of propositions [11, 18.17, 18.18].

Remark 3.4. In particular, in general a given étale algebra L can be a G-Galois
algebra for non-isomorphic groups G. Indeed, L has a structure of G-Galois
algebra for some G iff as an alegbra it has the form L ' Mn for some Galois
extension M/K, and it has a G-Galois algebra structure for any group G that
has Gal(M/K) as an index n subgroup.

3.2 Crossed products
We can now define our notion of crossed product:

Definition 3.5. Let A be a central simple algebra over K, let G be a finite
group with |G| = deg(A), and let L be a G-Galois algebra over K. We say
that A is a (G,L)-crossed product if it is equipped with a K-embedding L→ A.
An isomorphism of (G,L)-crossed product is an isomorphism of algebras which
commutes with the embeddings, and we write X(G,L) for the set of isomorphism
classes of (G,L)-crossed products.

Remark 3.6. For division algebras this is equivalent to the more usual defi-
nition using Galois field extension, but for general central simple algebras this
definition is strictly larger, since for instance over a separably closed field K,
the matrix algebra M2(K) is a (Z/2Z,K2)-crossed product with this definition,
but cannot have an embedded quadratic subfield.

We have the usual presentation for crossed products, identical to the classical
case where L is only allowed to be a field. This is justified by the following
variant of the Skolem-Noether theorem:

Proposition 3.7. Let A be a central simple algebra over K, and let L be an étale
K-algebra such that [L : K] = deg(A). Then for any two K-algebra embeddings
j1, j2 : L → A, there exists a ∈ A∗ such that j2(x) = aj1(x)a−1 for all x ∈ L.
Furthermore, if we identify L with a subalgebra of A, CA(L) = L, where CA(L)
is the centralizer of L in A.

Proof. Assume L is a subalgebra of A, through either one of the embeddings.
We have L ⊂ CA(L) since L is commutative, and we can check for instance
after splitting A that L = CA(L) (since the elements of L are simultaneously
diagonalizable).

Note that since AL is a finite direct product of central simple algebras over
fields, if two AL-modules have isomorphic endomorphism algebras, they are
isomorphic as module. We define two structures of right AL-module on A, by
x ·i (a⊗λ) = ji(λ)xa for i = 1, 2, and we write Ai for the corresponding module.
Then EndAL(Ai) = CA(ji(L)) = ji(L) ' L, so A1 ' A2 as AL-modules. If
f : A1 → A2 is a module isomorphism, then a simple calculation shows that
a = f(1) satisfies j2(x) = aj1(x)a−1 for all x ∈ L.
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Thus if A is a (G,L)-crossed product, where we identify L with a subalgebra
of A, for any g ∈ G we can set

Tg(A) = {a ∈ A | ∀λ ∈ L, aλ = g(λ)a} (16)

and the proposition implies that each Tg(A) is a L-line containing invertible
elements. As K-vector spaces, we have

A =
⊕
g∈G
Tg(A).

Note that T1(A) = L, that Tg(A)Th(A) = Tgh(A), and that TrdA is zero on
Tg(A) if g 6= 1. We say that a family (ug)g∈G is a choice of standard generators
of A if ug ∈ Tg(A) is an invertible element for all g ∈ G.

Then we easily see that for any g, h ∈ G, we have

uguh = α(g, h)ugh (17)

for some α(g, h) ∈ L∗, and the associativity of A shows that (g, h) 7→ α(g, h) is a
2-cocycle in Z2(G,L∗). Furthermore, if we choose different generators u′g = cgug
for some cochain (cg) ∈ C1(G,L∗), we get

α′(g, h) =
cgg(ch)

cgh
α(g, h) (18)

so the cohomology class [α] ∈ H2(G,L∗) is well-defined. This defines an injective
map

X(G,L) −→ H2(G,L∗).

Remark 3.8. At least for g = 1, there is a canonical choice for u1, namely
the unit 1 of A. Making this choice amounts to having α be a reduced cocycle,
meaning that α(g, h) = 1 whenever g or h is 1. Unless otherwise specified, we
will always make this choice.

Conversely, given any 2-cocycle α ∈ Z2(G,L∗) where L is a G-Galois al-
gebra, we can define a central simple algebra Aα generated by L and some
elements ug satisfying the relations (16) and (17). This means that the map
X(G,L) → H2(G,L∗) described above is actually bijective. Note that there
is an obvious surjective map X(G,L) → Br(L/K), which is well-known to be
injective, meaning that if there is an algebra isomorphism between two (G,L)-
crossed product, then there is an isomorphism that preserves the embedding of
L. This is one way to describe the classical isomorphism Br(L/K) ' H2(G,L∗).

3.3 Crossed products with involution
Now we examine what happens if we add an involution on such a crossed prod-
uct.

Definition 3.9. Let G be a finite group, L be a G-Galois algebra over K, and
σ ∈ AutK(L) be of order at most 2 such that σGσ = G (where we see G as a
subgroup of AutK(L)).

Let (A, θ) be an algebra with involution over K. We say that (A, θ) is a
(G,L, σ)-crossed product if it is a (G,L)-crossed product such that θ|L = σ
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(where we see L as a subalgebra of A). We then usually write θ = σ. An
isomorphism of (G,L, σ)-crossed product is an isomorphism of (G,L)-crossed
product which is also an isomorphism of algebras with involution. We write
X(G,L, σ) for the set of isomorphism classes of (G,L, σ)-crossed products.

Remark 3.10. The condition σGσ = G is in particular satisfied when σ ∈ G.
This is always the case when L is a field, since σ is aK-automorphism of L, hence
an element of Gal(L/K). In [9], only the case where L is a field is considered,
but they also allow unitary involutions, in which case obviously σ 6∈ G. Our
formalism can be easily adapted to unitary involutions as well (we just need to
allow σ to be in Autk(L) where K/k is a quadratic extension).

We now explain how to describe X(G,L, σ) in a similar way to how we
described X(G,L). Note that there is an obvious map X(G,L, σ)→ X(G,L).

For any g ∈ G, we set
g = σg−1σ ∈ G

and
σg = gσ ∈ AutK(L).

Then g 7→ g is an anti-automorphism of order at most 2 of G. Furthermore,
σg is involutive iff g = g, which happens in particular when g = 1 (in which
case σg = σ) and g = σ (when σ ∈ G, in which case σg = IdL).

We define Z(G,L, σ) ⊂ Z2(G,L∗) × C1(G,L∗) such that (α, (µg)) is in
Z(G,L, σ) iff for all g, h ∈ G:

µgσg(µg) = 1 (19)

and
µhg(µg)α(h, g) = µghσgh(α(g, h)). (20)

We define a group morphism:

δ : C1(G,L∗) −→ Z(G,L, σ)

(cg) 7−→
(

(g, h) 7→ cgg(ch)
cgh

,
(
σg(cg)
cg

))
.

The fact that it is well-defined and a group morphism results from a simple
computation. Then we set

H(G,L, σ) = Coker(δ).

Proposition 3.11. Let G, L and σ be as in definition 3.9, and let (A, σ) be a
(G,L, σ)-crossed product. Then for any g ∈ G we have σ(T (A)) = Tg(A). In
particular, for any choice of standard generators ug, there is a unique family
(µg)g∈G ∈ C1(G,L∗) such that

σ(ug) = µgug (21)

for all g ∈ G.
Then if α ∈ Z2(G,L∗) is the 2-cocycle associated to the generators (ug), we

have (α, (µg)) ∈ Z(G,L, σ). Any other choice u′g = cgug of generators leads to
the element

(α′, (µ′g)) = δ((cg)) · (α, (µg))
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so that we have a well-defined map

X(G,L, σ) −→ H(G,L, σ).

Furthermore, this map is a bijection that makes the following diagram com-
mute:

X(G,L, σ) H(G,L, σ)

X(G,L) H2(G,L∗).

Proof. Let g ∈ G, a ∈ Tg(A) and λ ∈ L. Then applying σ to the equation
a(g−1σ)(λ) = σ(λ)a we get

σ(a)λ = g(λ)σ(a),

so σ(a) ∈ Tg(A). The uniqueness of µg ∈ L∗ such that equation (21) holds is
justified by the invertibility of ug. The equations (19) and (20) are immediately
obtained from σ2(ug) = ug and σ(uguh) = σ(uh)σ(ug).

If u′g = cgug, then α′ is given by the usual cocycle equation (18), and

σ(u′g) = σ(cgug) = µgugσ(cg) = µg
gσ(cg)

cg
u′g,

which by definition of the map δ is the expected relation.
The diagram and its commutativity are obvious: the map from H(G,L, σ) to

H2(G,L∗) is induced by the natural projection from Z(G,L, σ) to Z2(G,L∗),
and by definition this commutes with the coboundary maps from C1(G,L∗).
The only left to check is the fact that X(G,L, σ) → H(G,L, σ) is bijective.
For injectivity, suppose (A′, σ) is another (G,L, σ)-crossed product defining the
same class as (A, σ) in H(G,L, σ). Then we can choose standard generators in
A′ which define the same element in Z(G,L, σ); but these relations completely
characterize the algebra structure of A′ and the action of σ, so actually (A, σ)
and (A′, σ) are isomorphic as (G,L, σ)-crossed products. For surjectivity, given
any element (α, (µg)) ∈ Z(G,L, σ), we can define A from α as for usual (G,L)-
crossed products, and define the involution σ on A by having it act as σ ∈
AutK(L) on the copy of L in A, and on the ug by equation (21). Then condition
(20) will ensure that it is an anti-morphism, and condition (19) will impose that
it is involutive.

3.4 Twisted trace forms
Now that we gave a way to describe crossed products with involution, we
can compute certain twisted involution trace forms. Precisely, let (A, σ) be
a (G,L, σ)-crossed product over K. Then we want to describe Tσ,a where
a ∈ Tt(A) is an invertible element in Sym(A, σ), for some t ∈ G. According
to proposition 3.11, this imposes that t = t (see section 3.5 for a discussion on
the existence of such an element a).

Thus we set S = {t ∈ G | t = t}. Note that 1 ∈ S and σ ∈ S whenever σ ∈ G
(which happens for instance when L is a field). When σ = 1, then S is the set
of elements of order at most 2 in G, and when σ 6= 1 then t ∈ S iff σ and t
generate a dihedral subgroup of AutK(L).
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We also set for any t ∈ S:

Gt = {g ∈ G | [σ, g] = t}

where [g, h] = ghg−1h−1 is the classical commutator in G (note that [σ, g] is
always in S). In particular, G1 is the centralizer CG(σ) of σ in G, and if σ ∈ G
then Gσ = ∅. When σ = 1, then G1 = G and Gt = ∅ for any non-trivial t ∈ S.

Proposition 3.12. Let (A, σ) be a (G,L, σ)-crossed product over K, and let
t ∈ S. Suppose a ∈ Tt(A) is invertible and symmetric. For any choice of
standard generators on A (with a = ξut), we set for all g ∈ Gt:

ωg = σ(ug)aug = g(ξ)µgα(g, t)α(gt, g) ∈ (Lσ)∗.

We then define qa ∈W (Lσ) by, if σ = 1:

qa =
∑
g∈Gt

〈ωg〉;

and if σ 6= 1 and L = Lσ(
√
d):

qa = 〈2〉〈〈d〉〉
∑
g∈Gt

〈ωg〉.

Then qa is independent of the choice of standard generators, and we have in
W (K):

Tσ,a = (TrLσ/K)∗(qa)

where (TrLσ/K)∗ : W (Lσ)→W (K) is as in (11).

Proof. For any g ∈ Gt, if we set u′g = cug for some c ∈ L∗, then we get

ω′g = σ(cug)a(cug)

= (gσ)(c) · (gt)(c) · ωg.

Suppose first that σ = 1. Then if t 6= 1 we have Gt = ∅ so qa = 0 is indeed
independent of the choice of generators. If t = 1, then for any g ∈ G we have
ω′g = (g−1(c))2ωg, so 〈ω′g〉 = 〈ωg〉 in GW (L), and qa is again independent of the
choice.

Now assume that σ 6= 1. Then we get

ω′g = NL/Lσ (g−1(c))ωg,

and for any x ∈ NL/Lσ (L∗) we have 〈x〉〈〈d〉〉 = 〈〈d〉〉 since 〈〈d〉〉 is the norm form
of L/Lσ (so x is represented by 〈〈d〉〉, and thus it is a similarity factor). So in
the end 〈ω′g〉〈〈d〉〉 = 〈ωg〉〈〈d〉〉, and qa is well-defined.

We define the function ϕ : G → G by gtϕ(g) = 1. Let g, h ∈ G with
ϕ(g) 6= h. Then for any x ∈ Tg(A) and y ∈ Th(A), σ(x)ay ∈ Tgth(A), so since
by hypothesis gth 6= 1, we have TrdA(σ(x)ay) = 0, and x and y are orthogonal
for Tσ,a.

It is easy to see that ϕ2 = IdG, so if we write Z for the set of orbits of ϕ, we
have a natural decomposition Z = Z1 ∪ Z2 between orbits of size 1 and 2, and
{g} ∈ Z1 iff g ∈ Gt. For any z ∈ Z, we write Vz =

⊕
g∈z Tg(A). Then what we
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just showed implies that the Vz are orthogonal for Tσ,a, and that if z = {g, h}
then Tg(A) is a Lagrangian for Vz, so Vz is a hyperbolic subspace when z ∈ Z2.

For any g ∈ Gt, under the K-isomorphism

L
∼−→ Tg(A)

x 7−→ g(x)ug,

the restriction of the bilinear form Tσ,a to Tg(A) corresponds to

bg : L× L −→ K
(x, y) 7−→ TrL/K(σ(x)yωg),

so in W (K) we have Tσ,a =
∑
g∈Gt bg. If σ = 1, then bg = (TrL/K)∗(〈ωg〉); if

σ 6= 1, then

bg(x, y) = TrLσ/K
(
TrL/Lσ (σ(x)yωg)

)
= TrLσ/K

(
ωg TrL/Lσ (σ(x)y)

)
.

Now taking a Lσ-basis (1,
√
d) of L, we see that the form (x, y) 7→ TrL/Lσ (σ(x)y)

is isometric to 〈2〉〈〈d〉〉, so bg = (TrLσ/K)∗(〈2〉〈〈d〉〉〈ωg〉). In any case, we showed
that Tσ,a = (TrLσ/K)∗(qa).

Example 3.13. In particular, if t = σ, then Tσ,a is hyperbolic, and if σ = 1,
then Tσ,a is hyperbolic when t 6= 1. Furthermore, taking a = 1, the Witt index
of Tσ is at most deg(A) · |CG(σ)|.

Corollary 3.14. Let (A, σ) be a (G,L, σ)-crossed product over K, let s, t ∈ S,
and let x ∈ Ts(A), y ∈ Tt(A) be invertible ε-symmetric elements (for some
ε = ±1).

For any choice of standard generators on A (with x = ξus and y = ξ′ut), we
set for all g ∈ G such that [σs, g] = s−1t:

ωg = εx−1σ(ug)yug

= εs−1

(
g(ξ′)

ξ
µg

)
α(s−1, g)α(s−1g, t)α(s−1gt, y) ∈ (Lσs)∗.

We then define qx,y ∈W (Lσs) by: if s = σ and t 6= σ then qx,y = 0; if s = t = σ,

qx,y =
∑
g∈G
〈ωg〉;

and if L = Lσs(
√
d),

qx,y = 〈2〉〈〈d〉〉
∑

[σs,g]=s−1t

〈ωg〉.

Then qx,y is independent of the choice of standard generators, and we have
in W̃ (A, σ):

〈x〉σ · 〈y〉σ = (TrLσs/K)∗(qx,y).

Proof. We have an isomorphism f : (A, σ′) → (A, σ) in Brh(K), given by
〈x〉σ, where σ′(a) = x−1σ(a)x for all a ∈ A. We see that (A, σ′) is naturally
a (G,L, σs)-crossed product. We have f∗(〈1〉σ′) = 〈x〉σ, and f∗(〈a〉σ′) = 〈y〉σ
with a = εx−1y. Then 〈x〉σ · 〈y〉σ = Tσ′,a, and a ∈ Ts−1t(A), so we can apply the
previous proposition. The statement then follows, since ωg = σ′(ug)aug.
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Example 3.15. In particular, 〈x〉σ · 〈y〉σ = 0 in W̃ (A, σ) if t = sσ.

Remark 3.16. This shows that 〈x〉σ · 〈y〉σ is in the trace ideal of W̃ (A, σ)
relative to the étale algebra Lσs/K, but also by symmetry in the trace ideal
relative to Lσt/K (see remark 2.26).

3.5 Existence of symmetric standard generators
We still assume that (A, σ) is a (G,L, σ)-crossed product. We have seen that
for any t ∈ G, a necessary condition for the existence of a non-zero symmetric
element in Tt(A) is that t = t. We want to establish exactly when such an
element exists under this condition.

Proposition 3.17. Let (A, σ) be a (G,L, σ)-crossed product, and let t ∈ G be
such that t = t. If t 6= σ, then there is a symmetric invertible element in Tt(A).

Proof. The statement means that if t = t, we can choose some standard gener-
ator ut such that µt = 1. Note that in this situation, the element σt ∈ AutK(L)
has order 2, the relation (19) becomes

µtσt(µt) = 1,

and taking u′t = ctut gives

µ′t =
σt(ct)

ct
µt.

We can then apply the Hilbert 90 theorem to the extension L/Lσt to see
that there is c ∈ L∗ such that µt = c

σt(c)
, so indeed we can take µ′t = 1.

We see that the situation is a little different when t = σ: then σt = IdL, so
µ2
t = 1 and µt does not depend on the choice of ut.

Proposition 3.18. Let (A, σ) be a (G,L, σ)-crossed product, such that σ ∈ G,
and let us make a choice of standard generators on A. Then A is naturally
a L-module on the left, and there is a canonical identification AL ' EndL(A)
given by (a⊗ λ) · x = axλ. We define

ϕ : A×A −→ L
(x, y) 7−→ πσ(σ(x)y)

where πσ(
∑
g ugλg) = λσ. Then ϕ is a L-bilinear form on A, which is µσ-

symmetric, and its adjoint involution on AL is σL.

Proof. By definition, for any x ∈ A and any a, b ∈ L, we have

πσ(axb) = σ(a)πσ(x)b

and
πσ(σ(x)) = σ(µσ)πσ(x).

so if y ∈ A:

ϕ(xa, yb) = πσ(σ(a)σ(x)yb)

= aϕ(x, y)b
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which shows that ϕ is L-bilinear. Furthermore:

ϕ(y, x) = πσ(σ(σ(x)y))

= σ(µσ)ϕ(x, y)

so ϕ is ε-symmetric with ε = σ(µσ) (we have ε2 = 1 but that does not necessarily
imply ε = ±1 if L is not a field). Finally, if a, x, y ∈ A and λ ∈ L:

ϕ((a⊗ λ) · x, y) = πσ(σ(λ)σ(x)σ(a) · y)

= πσ(σ(x) · σ(a)y)λ

= ϕ(x, σL(a⊗ λ) · y)

so σϕ = σL. This shows in particular that ε = ±1, so ε = σ(µσ) = µσ.

Corollary 3.19. Let (A, σ) be a (G,L, σ)-crossed product, such that σ ∈ G.
Then Tσ(A) ⊂ Sym(A, σ) if σ is orthogonal, and Tσ(A) ⊂ Skew(A, σ) if σ is
symplectic. In particular, if σ acts trivially on L then σ is orthogonal.

Proof. If σ is orthogonal, then so is σL, so the bilinear form ϕ in proposition
3.18 must be symmetric. This means that any invertible element uσ ∈ Tσ(A)
is symmetric (since µσ = 1). But then any a ∈ Tσ(A) has the form λuσ for
some λ ∈ L, so σ(a) = σ(uσ)σ(λ) = a. The reasoning is the same when σ is
symplectic.

Remark 3.20. In [11, 4.13], it is shown that if an involution on A acts trivially
on any subfield L of A with [L : K] = deg(A), then σ must be orthogonal. The
proof can be adapted to the case where L is an étale subalgebra (not necessarily
Galois).

3.6 Mixed Witt ring of quaternions
As a special case, we can give a complete description of the product in the
mixed Witt ring of a quaternion algebra with its canonical involution (of course
we could have done a direct computation in this case, which is much simpler
than the general case).

Lemma 3.21. Let L = K(
√
d) be an étale quadratic algebra, and let a ∈ L∗.

If a ∈ K
√
d then (TrL/K)∗(〈a〉) is hyperbolic, and otherwise

(TrL/K)∗(〈a〉) = 〈TrL/K(a)〉〈〈−d ·NL/K(a)〉〉.

Proof. If a = a0 + a1

√
d, then in the basis (1,

√
d) the matrix of (TrL/K)∗(〈a〉)

is (
2a0 2da1

2da1 2da0

)
,

so if a0 = 0 it is hyperbolic, and otherwise it is isometric to 〈2a0〉〈〈−∆〉〉 where
∆ is the determinant of the matrix. Now ∆ = 4d(a2

0− da2
1), so we can conclude

since TrL/K(a) = 2a0 and NL/K(a) = a2
0 − da2

1.

Recall that if Q is a quaternion algebra, then its reduced norm map is a
quadratic form on Q, denoted nQ ∈ GW (K), and it is the unique 2-Pfister form
whose Clifford invariant e2(nQ) ∈ H2(K,µ2) is the Brauer class of Q.
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For any pure quaternions z1, z2 ∈ Q, the Brauer class [Q] and the symbol
(z2

1 , z
2
2) ∈ H2(K,µ2) have a common slot (for instance z2

1), so [Q] + (z2
1 , z

2
2) is a

symbol. We write ϕz1,z2 ∈ GW (K) for the unique 2-Pfister form whose Clifford
invariant is this symbol. In particular, if z1 and z2 anti-commute, ϕz1,z2 is
hyperbolic.

Proposition 3.22. Let (Q, γ) be a quaternion algebra over K endowed with its
canonical symplectic involution. Then for any a, b ∈ K∗ we have

〈a〉γ · 〈b〉γ = 〈2ab〉nQ ∈ GW (K)

in G̃W (Q, γ). Furthermore, for any invertible pure quaternions z1, z2 ∈ Q,

〈z1〉γ · 〈z2〉γ = 〈−TrdQ(z1z2)〉ϕz1,z2 ∈ GW (K)

in G̃W (Q, γ) (if z1 and z2 anti-commute, then TrdQ(z1z2) = 0 so 〈−TrdQ(z1z2)〉
is not well-defined, and in that case we mean that 〈z1〉γ · 〈z2〉γ is hyperbolic).

Proof. Note that for any choice of invertible pure quaternion z in Q, L = K(z)
is a G-Galois algebra in Q of maximal dimension where G = {1, σ} ' Z/2Z,
and (Q, γ) is a (G,L, σ)-crossed product.

Of course if a, b ∈ K∗, then a, b ∈ T1(A), so we can use corollary 3.14
with s = t = 1, and take for uσ any invertible pure z′ that anti-commutes
with z. Then we find 〈a〉γ · 〈b〉γ = 〈2〉〈〈z2〉〉〈ω1, ωσ〉 where ω1 = a−1b and
ωσ = −a−1b(z′)2, so we can conclude since 〈〈z2, (z′)2〉〉 = nQ.

Now given z1 and z2, take for z any pure quaternion that anti-commutes
with both z1 and z2. Then z1, z2 ∈ Tσ(A), so we can apply corollary 3.14 with
s = t = σ, so 〈z1〉γ · 〈z2〉γ = TrL/K(qz1,z2). To compute qz1,z2 = 〈ω1, ωσ〉, we
may take uσ = z1, so ω1 = −z−1

1 z2 and ωσ = z2z1. Thus qz1,z2 = 〈〈z2
1〉〉〈−z1z2〉

(with indeed z1z2 ∈ L∗). According to lemma 3.21, TrL/K(qz1,z2) is hyperbolic
if z1 and z2 anti-commute (which is equivalent to z1z2 ∈ Kz), and otherwise it
is equal to 〈〈z2

1〉〉 · 〈TrL/K(−z1z2)〉〈〈−z2 ·NL/K(−z1z2)〉〉. Then we can conclude
since TrL/K(z1z2) = TrdQ(z1z2), NL/K(−z1z2) = z2

1z
2
2 , and

e2(〈〈z2
1 ,−z2z2

1z
2
2〉〉) = (z2

1 , z
2
2) + (z2

1 , z
2) = (z2

1 , z
2
2) + [Q].

Remark 3.23. The twisted involution trace forms of (Q, γ) are computed in a
much more straightforward way in [11, 11.6]. We wanted to showcase how to
use the more general corollary 3.14 in a concrete case. The result can also be
obtained using proposition 5.10.

4 Lambda-operations
In the classical theory of quadratic forms, the Witt ring W (K) is usually more
practical than the more fundamental Grothendieck-Witt ring GW (K), and the
loss on information between the two is small enough thatW (K) sees much more
use. But there is at least one important feature that GW (K) enjoys and not
W (K): it is a λ-ring (see [24] for a reference on λ-rings, and [16] for a proof
that GW (K) is a λ-ring). Indeed, given a bilinear form (V, b), we may define
its λ-powers (Λd(V ), λd(b)), setting

λd(b)(u1 ∧ · · · ∧ ud, v1 ∧ · · · ∧ vd) = det(b(ui, vj)).
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We want to extend this structure to G̃W (A, σ), which is related to the
construction of λ-powers of an algebra with involution given in [11, 10.A].

4.1 Alternating powers of a module
If V is K-vector space, since char(K) 6= 2 we may see the exterior power
Λd(V ) in two different ways: either as a quotient of V ⊗d (which is the canonical
construction), or as a subspace. Precisely, for any π ∈ Sd we set

gπ : V ⊗d −→ V ⊗d

v1 ⊗ · · · ⊗ vd 7−→ vπ−1(1) ⊗ · · · ⊗ vπ−1(d),

and we define the anti-symmetrization map

sd =
∑
π∈Sd

(−1)πgπ

where (−1)π is the signature of the permutation π. Then the map sd is al-
ternating, so by universal property we get an induced map Λd(V ) → Altd(V ),
where Altd(V ) ⊂ V ⊗d is the image of sd, and a classical result of linear algebra
states that this is an isomorphism, that may be explicited as v1 ∧ · · · ∧ vd 7→
sd(v1 ⊗ · · · ⊗ vd).

Since the maps gπ are precisely the elements gA(π) in the case A = EndK(V )
(see remark 1.2), we may generalize this construction in the non-split case. Thus
we define, as in [11, §10.A], the anti-symmetrisation element sd,A ∈ A⊗d by:

sd,A =
∑
π∈Sd

(−1)πgA(π). (22)

Note that s0,A = 1 ∈ K, s1,A = 1 ∈ A, and s2,A = 1− gA ∈ A⊗K A.

Definition 4.1. Let A be a central simple algebra over K, let V be a right
A-module, with B = EndA(V ), and let d ∈ N. We set

Altd(V ) = sd,BV
⊗d ⊂ V ⊗d

as a right A⊗d-module, with in particular Alt0(V ) = K and Alt1(V ) = V .

By construction, we retrieve the case of vector spaces discussed above, when
A = K. In general, we have:

Proposition 4.2. Let A be a central simple algebra over K, let V be a right
A-module, and let d ∈ N. Then

rdimA⊗d(Altd(V )) =

(
rdimA(V )

d

)
.

Proof. It is enough to check this when A is split, in which case A = EndK(U)
for some K-vector space U , and V ' W ⊗K U for some K-vector space W , so
that EndA(V ) ' EndK(W ). Then by construction Altd(V ) ' Λd(W )⊗K U⊗d,
so EndA⊗d(V ) ' EndK(λd(W )). Thus if n = dimK(W ), then rdimA(V ) = n
and rdimA⊗d(Altd(V )) =

(
n
d

)
.

In particular, if d > rdimA(V ) then Altd(V ) = {0}. This means that we
have to be a little careful if we want to allow arbritrary d ∈ N, since most of
our results have been stated for non-zero modules. Note that this means that
if d > deg(A) then sd,A = 0.
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4.2 The shuffle product
We start by recalling some elementary results about symmetric groups and
shuffles. Let d ∈ N, and p, q ∈ N such that p + q = d. Then we can define
the Young subgroup Sp,q ⊂ Sd, which contains the permutations that preserve
the sets {1, . . . , p} and {p + 1, . . . , p + q}. There is a natural isomorphism
Sp,q ' Sp×Sq, such that the restriction of the signature of Sd corresponds to
the product of the signatures on Sp and Sq.

Lemma 4.3. Let V1 and V2 be right A-modules, and let Bi = EndA(Vi) and
B = EndA(V1 ⊕ V2). Take π ∈ Sp,q, corresponding to the product of π1 ∈ Sp

and π2 ∈ Sq. Let x ∈ V ⊗p1 and y ∈ V ⊗q2 . Then:

gB(π) · (x⊗ y) = (gB1
(π1) · x)⊗ (gB2

(π2) · y).

Proof. It is enough to treat the case where A is split, in which case it is clear
by construction.

We may also define the set of (p, q)-shuffles Sh(p, q) ⊂ Sd, which are the
permutations that are increasing functions when restricted to {1, . . . , p} and
{p+ 1, . . . , p+ q}.

Lemma 4.4. Any element of Sd can be written in a unique way as πσ, with
π ∈ Sh(p, q) and σ ∈ Sp,q.

Proof. Let τ ∈ Sd. We set σ1 ∈ Sp and σ2 ∈ Sq defined by τ(σ−1
1 (1)) <

· · · < τ(σ−1
1 (p)) and τ(σ−1

2 (p + 1)) < · · · < τ(σ−1
2 (p + q)); in other words, σ1

is obtained by ordering τ(1), . . . , τ(p) in increasing order, and likewise for σ2

with τ(p + 1), . . . , τ(p + q). We take σ ∈ Sp,q corresponding to (σ1, σ2), and
π = τσ−1. Then by construction π(1) < · · · < π(p) and π(p+1) < · · · < π(p+q),
so π ∈ Sh(p, q).

If we have another decomposition τ = σ′π′, then since π′ ∈ Sh(p, q) we
must have τ((σ′1)−1(1)) < · · · < τ((σ′1)−1(p)) and τ((σ′2)−1(p + 1)) < · · · <
τ((σ′)−1

2 (p+ q)), so σ′ = σ (and π′ = π).

As a consequence, we get:

Lemma 4.5. Let A be a central simple algebra over K. Then the element

shp,q,A =
∑

π∈Sh(p,q)

(−1)πgA(π) ∈ A⊗d

satisfies
shp,q,A · (sp,A ⊗ sq,A) = sd,A.

Proof. We have, using lemmas 4.3 and 4.4:

shp,q(sp ⊗ sq) =
∑

π∈Sh(p,q)

(−1)πg(π)(sp ⊗ sq)

=
∑

π∈Sh(p,q)

(−1)πg(π)

 ∑
σ∈Sp,q

(−1)σg(σ)


=

∑
π∈Sh(p,q),σ∈Sp,q

(−1)πσg(πσ)

= sd.
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Let A be a central simple algebra over K, and V a A-module, with B =
EndV (A). If p+ q = d, we define a A⊗d-module morphism

V ⊗p ⊗K V ⊗q → V ⊗d,

called the shuffle product and denoted x#y, by

x#y = shp,q,B · (x⊗ y) (23)

where shp,q,B is defined in lemma 4.5.
We easily see be definition that the shuffle product is associative and alter-

nating, and in particular anti-symmetric.

Proposition 4.6. The shuffle product induces a commutative diagram

V ⊗p ⊗K V ⊗q V ⊗d

Altp(V )⊗K Altq(V ) Altd(V ).

⊗

#

Proof. Unwrapping the definitions, this is precisely equivalent to lemma 4.5.

We now establish the analogue of the well-known addition formula for exte-
rior powers of vector spaces:

Proposition 4.7. Let U and V be right A-modules. Then for any d ∈ N the
shuffle product induces an isomorphism of A⊗d-modules :

d⊕
k=0

Altk(U)⊗K Altd−k(V )
∼−→ Altd(U ⊕ V ).

Proof. Using the previous proposition, we easily establish that Altd(U ⊕ V ) is
linearly spanned by the elements of the type x1# · · ·#xd with xi in U or V .
Now since the shuffle product is anti-symmetrical, we can permute the xi so that
x1, . . . , xk ∈ U and xk+1, . . . , xd ∈ V . But any element of this type is obviously
in the image of the map described in the statement of the proposition, so this
map is surjective. We may then conclude that it is an isomorphism by checking
the dimensions over K.

Note that by construction, Altd is a covariant functor with respect to bi-
module isomorphisms: if V,W are B-A-bimodules, and f : V → W is an iso-
morphism, there is a unique isomorphism Altd(f) of B⊗d-A⊗d-bimodules that
makes this diagram commute:

Altd(V ) Altd(W )

V ⊗d W

Altd(f)

jV jW

f

where jV , jW are the canonical inclusions.
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4.3 Alternating powers of a ε-hermitian form
Now if V is a A-module equipped with a ε-hermitian form h with respect to some
involution σ on A, we want to endow Altd(V ) with an induced form Altd(h) such
that in the split case we recover the exterior power of the bilinear form.

Lemma 4.8. Let A be a central simple algebra over K. Then the element
sd,A ∈ A⊗d is symmetric for the involution σ⊗d for any involution σ on A.

Proof. It follows directly from the fact, proved in lemma 1.3, that the Goldman
element is symmetric for σ ⊗ σ.

This observation allows the following definition:

Definition 4.9. Let (A, σ) be an algebra with involution over K, and let (V, h)
be a ε-hermitian module over (A, σ), with B = EndA(V ). We set:

Altd(h) : Altd(V )×Altd(V ) −→ A⊗d

(sd,Bx, sd,By) 7−→ h⊗d(x, sd,By) = h⊗d(sd,Bx, y).

The equality on the right is a consequence of the fact that sd,B is symmetric
for τ⊗d where τ is the adjoint involution of h. The left-hand side of the equality
shows that the map is well-defined in sd,By, and the right-hand side shows that
it is well-defined in sd,Bx.

Proposition 4.10. The application Altd(h) is a εd-hermitian form over (A⊗d, σ⊗d).

Proof. We have for all x, y ∈ V ⊗d and all a, b ∈ A⊗d:

Altd(h)(sd,Bx · a, sd,By · b) = h⊗d(xa, sd,Byb)

= σ⊗d(a)h⊗d(x, sd,By)b

= σ⊗d(a) Altd(h)(sd,Bx, sd,By)b

and

Altd(h)(sd,By, sd,Bx) = h⊗d(y, sd,Bx)

= εdσ⊗d(h⊗d(sd,Bx, y))

= εdσ⊗d(Altd(h)(sd,Bx, sd,By)).

Remark 4.11. When d > rdimA(V ), Altd(h) is the trivial hermitian form on
the zero module, so (Altd(V ),Altd(h)) defines a morphism in Brh(K)′ and not
Brh(K).

Remark 4.12. We could have exhibited a canonical isomorphism Altd(V ∗) '
Altd(V )∗, and then defined Altd(h) by imposing that Âltd(h) be the composition
of Altd(ĥ) with this canonical identification.

Remark 4.13. Since we defined Altd(V ) as a submodule of V ⊗d, in addition to
Altd(h) it is also naturally equipped with the restriction of h⊗d, and we may won-
der what the link is between the two. Since h⊗d(sd,Bx, sd,By) = h⊗d(x, s2

d,By)

and s2
d,B = d!sd,B (which is easy to see from the definition), we can conclude

that
h⊗d|Altd(V )

= 〈d!〉Altd(h).

In particular, in arbitrary characteristic we cannot simply define Altd(h) in
terms of the restriction of h⊗d.
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We can then show the compatibility of this construction with the sum for-
mula:

Proposition 4.14. Let (A, σ) be an algebra with involution over K, and let
(U, h) and (V, h′) be ε-hermitian modules over (A, σ). The module isomorphism
in proposition 4.7 induces an isometry

d⊕
k=0

Altk(h)⊗K Altd−k(h′)
∼−→ Altd(h ⊥ h′).

Proof. We set B1 = EndA(U), B2 = EndA(V ), and B = EndA(U ⊕ V ). Let
u, u′ ∈ U⊗k and v, v′ ∈ V ⊗d−k. Then

Altd(h ⊥ h′)((sk,B1
u)#(sd−k,B2

v), (sk,B1
u)#(sd−k,B2

v))

= Altd(h ⊥ h′)(sd,B(u⊗ v), sd,B(u′ ⊗ v′))
=(h ⊥ h′)⊗d(sd,B(u⊗ v), u′ ⊗ v′)

=
∑
π∈Sd

(−1)π(h ⊥ h′)⊗d(gB(π)(u⊗ v), u′ ⊗ v′),

where we used lemma 4.4 for the first equality. We want to show that

(h ⊥ h′)⊗d(gB(π)(u⊗ v), u′ ⊗ v′)

is zero if π 6∈ Sk,d−k. But if u = x1 ⊗ · · · ⊗ xk, u′ = y1 ⊗ · · · ⊗ yk, and
v = xk+1 ⊗ · · · ⊗ xd, v′ = yk+1 ⊗ · · · ⊗ yd, then using lemma 1.1:

(h ⊥ h′)⊗d(gB(π)(u⊗ v), u′ ⊗ v′)
= (h ⊥ h′)⊗d((xπ−1(1) ⊗ · · · ⊗ xπ−1(d)) · gA(π), (y1 ⊗ · · · ⊗ yd))
= σ⊗d(gA(π)) · (h ⊥ h′)(xπ−1(1), y1)⊗ · · · ⊗ (h ⊥ h′)(xπ−1(d), yd)

which is indeed zero if π 6∈ Sk,d−k since at least one of the (h ⊥ h′)(xπ−1(i), yi)
will be zero. Hence:

Altd(h ⊥ h′)(sk,B1
u#sd−k,B2

v, sk,B1
u#sd−k,B2

v)

=
∑

π∈Sk,d−k

(−1)π(h ⊥ h′)⊗d(gB(π)(u⊗ v), u′ ⊗ v′)

=
∑
π1∈Sk

∑
π2∈Sd−k

(−1)π1π2(h ⊥ h′)⊗d(gB1
(π1)u⊗ gB2

(π2)v), u′ ⊗ v′)

= h(sk,B1u, u
′)⊗ h′(sd−k,B2v, v

′).

Starting from some morphism f : (B, τ) → (A, σ) in Brh(K), we have
defined another morphism Altd(f), in Brh(K)′ when d is large enough, with
target (A⊗d, σ⊗d). It is natural to try to understand what is the source object of
this morphism; in other words, we want to study EndA⊗d(Altd(V )) and σAltd(h)

in terms of (V, h). First we take a look at the special case of identity morphisms
in Brh(K).

Definition 4.15. Let (A, σ) be an algebra with inveolution over K, and let
d ∈ N. We write Λdσ = Altd(〈1〉σ), where we recall that 〈1〉σ is the identity of
(A, σ) in Brh(K).
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Then (λd(A), σ∧d) is the algebra with involution such that

Λdσ : (λd(A), σ∧d)→ (A⊗d, σ⊗d)

is a morphism in Brh(K).

Note that this definition agrees with the one given in [11], ours being a refor-
mulation in the language of Brh(K) (the main difference is that in [11] σ∧d is
defined directly and not as the adjoint involution of some hermitian form). The
algebra λd(A) is actually well-defined with no reference to any involution, sim-
ply by λd(A) = EndA⊗d(Altd(A)) where A is seen as a tautological A-module.
If d > deg(A), then Λd(A) is the zero ring.

Proposition 4.16. Let f : (B, τ) → (A, σ) be a morphism in Brh(K). Then
for any d ∈ N the following diagram in Brh(K)′ commutes:

(λd(B), τ∧d)

(B⊗d, τ⊗d) (A⊗d, σ⊗d).

Λdτ
Altd(f)

f⊗d

Proof. Say f corresponds to the ε-hermitian module (V, h). By definition,
f⊗d ◦ Λdτ then corresponds to (sd,BB

⊗d ⊗B⊗d V ⊗d, h⊗d ◦ Altd(〈1〉τ )), where
sd,BB

⊗d ⊗B⊗d V ⊗d ' sd,BV ⊗d = Altd(V ) and h⊗d ◦Altd(〈1〉τ ) is

((sd,Bx)⊗ u, (sd,By)⊗ v) 7→ h⊗d(u, σ⊗d(x)sd,Byv)

which under the above identification (taking x = y = 1) is exactly Altd(h).

Corollary 4.17. Let f and g be two morphisms in Brh(K) such that f ◦ g
exists. Then for any d ∈ N, we have in Brh(K)′:

f⊗d ◦Altd(g) = Altd(f ◦ g).

Proof. Write f : (B, τ)→ (A, σ) and g : (C, θ)→ (B, τ). The result follows from
the fact that the following diagram in Brh(K)′ commutes, which is established
by two applications of proposition 4.16:

(λd(C), θ∧d)

(C⊗d, θ⊗d) (B⊗d, τ⊗d) (A⊗d, σ⊗d).

Λdθ
Altd(g)

Altd(f◦g)

g⊗d f⊗d

We will not use it in the rest of the article, but it is interesting to note that
there is a functorial behaviour to the construction of (λd(A), σ∧d).

Definition 4.18. Let f : (B, τ) → (A, σ) be a morphism in Brh(K). Then
for any d ∈ N we define f∧d as the unique morphism in Brh(K)′ such that the
following square commutes:

(λd(B), τ∧d) (λd(A), σ∧d)

(B⊗d, τ⊗d) (A⊗d, σ⊗d).

f∧d

Λdτ Λdσ

f⊗d

If f = (V, h) we write f∧d = (V ∧d, h∧d).
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Remark 4.19. Explicitly, we have V ∧d ' sd,BV ⊗dsd,A, and the endomorphism
h∧d(sd,Bxsd,A, sd,Bysd,A) ∈ λd(A) of Altd(A) = sd,AA

⊗d is the multiplication
on the left by sd,Ah⊗d(x, sd,By).

Proposition 4.20. The association (A, σ) 7→ (λd(A), σ∧d) and f 7→ f∧d de-
fines a functor from Brh(K) to Brh(K)′, that has a natural extension to an
endofunctor of Brh(K)′.

Proof. Any functor Brh(K) → Brh(K)′ has an obvious extension to Brh(K)′

which preserves the zero object and the zero morphisms.
The functoriality is immediate from the fact that the following diagrams

commute in Brh(K)′:

(λd(A), σ∧d) (λd(A), σ∧d)

(A⊗d, σ⊗d) (A⊗d, σ⊗d)

Λdσ

〈1〉
σ∧d

Λdσ

〈1〉
σ⊗d

and

(λd(C), θ∧d) (λd(B), τ∧d) (λd(A), σ∧d)

(C⊗d, θ⊗d) (B⊗d, τ⊗d) (A⊗d, σ⊗d).

g∧d

Λdθ

f∧d

Λdτ Λdσ

g⊗d f⊗d

4.4 Exterior powers of a ε-hermitian module
In the case of vector spaces and bilinear forms, (Altd(V ),Altd(h)) gave an ap-
propriate definition for an operation λd : SW (K)→ SW (K)′, but for a general
A it simply defines a map SW ε(A, σ) → SW εd(A⊗d, σ⊗d)′. We can then get
back to (A, σ) using the isomorphism ϕ

(d)
(A,σ) in Brh(K) (recall definition 1.17).

Precisely:

Definition 4.21. Let (A, σ) be an algebra with involution over K, and let
(V, h) ∈ SW ε(A, σ). We set

(Λd(V ), λd(h)) = ϕ
(d)
(A,σ) ◦ (Altd(V ),Altd(h))

in Brh(K)′. This defines a map λd : SW ε(A, σ) → SW (K)′ if d is even, and
λd : SW ε(A, σ)→ SW ε(A, σ)′ if d is odd.

Remark 4.22. Note that Λd(V ) depends on σ, even though V and Altd(V )
are defined with no reference to any involution. On the other hand, Λd(V ) does
not depend on h. See proposition 4.33 for an illustration of this. Furthermore,
if d > rdimA(V ), then Λd(V ) = 0.

Remark 4.23. If (A, σ) = (K, Id), then (Λd(V ), λd(h)) ' (Altd(V ),Altd(h))
as bilinear spaces, and they coincide with the classical definition of exterior
powers, but we have to pay attention to the grading. If (V, h) is in the odd com-
ponent, then we have to distinguish two cases. When d is odd, (Λd(V ), λd(h))
and (Altd(V ),Altd(h)) correspond to the same element in the odd component.
On the other hand, when d is even, then (Altd(V ),Altd(h)) is still in the odd
component, while (Λd(V ), λd(h)) corresponds to the copy of that element in the
even component. See remark 4.29 for further comments.
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We want to show that this gives the structure we wanted on G̃W (A, σ).
Recall (see [24]) that a pre-λ-ring is a commutative ring R endowed with maps
λd : R→ R for all d ∈ N such that for all x, y ∈ R, λ0(x) = 1, λ1(x) = x, and

λd(x+ y) =

d∑
k=0

λk(x)λd−k(y).

Any family (λd)d of functions R → R can be encoded as a function λt : R →
R[[t]], with λt(x) =

∑
d∈N λ

d(x)td.
If we define Λ(R) = 1 + tR[[t]] as the set of formal power series with con-

stant coefficient 1, then Λ(R) is a multiplicative subgroup of R[[t]]∗, with a
group morphism η : (Λ(R), ·) → (R,+) which sends a formal series to its de-
gree 1 coefficient. Then (λd)d∈N defines a pre-λ-ring structure iff λt is a group
morphism with η as a section.

Example 4.24. The ring Z is a pre-λ-ring, with λt(n) = (1 + t)n.

A pre-λ-ring morphism is a ring morphism that commutes with the oper-
ations λd. We say that R is an augmented pre-λ-ring if it is equipped with a
pre-λ-ring morphism R→ Z.

Example 4.25. The canonical exterior powers λd : SW (K)→ SW (K) extend
to functions GW (K) → GW (K) that give GW (K) a natural pre-λ-ring struc-
ture. The dimension map dim : GW (K) → Z makes GW (K) an augmented
pre-λ-ring.

If R is a graded ring over some abelian group G, then we say it is a graded
pre-λ-ring if furthermore λd(Rg) ⊂ Rdg for all g ∈ G (writing G additively). A
graded pre-λ-ring morphism is a pre-λ-ring morphism that is also a homogeneous
map.

Example 4.26. The pre-λ-ring structure on GW (K) extends to a Z/2Z-graded
pre-λ-ring structure on GW±(K).

Example 4.27. If R is a G-graded pre-λ-ring and H is an abelian group,
then the group ring R[H] is naturally a (G × H)-graded pre-λ-ring, setting
λd(x · h) = λd(x) · (dh) for all x ∈ R and h ∈ H. Then the augmentation map
R[H]→ R is a morphism of G-graded pre-λ-rings.

If R is a G-graded pre-λ-ring, we say it is augmented if it has a graded pre-
λ-ring R → Z[G]. Composing with the augmentation Z[G] → Z then gives a
non-graded augmentation R→ Z.

We can then state:

Proposition 4.28. Let (A, σ) be a central simple algebra with involution of the
first kind over K. The maps λd defined in 4.21 on SW ε(K) and SW ε(A, σ)

extend uniquely to maps λd : G̃W (A, σ)→ G̃W (A, σ) such that G̃W (A, σ) is a
Γ-graded pre-λ-ring. Furthermore, the dimension map rdim : G̃W (A, σ)→ Z[Γ]
(see 2.32) is a graded augmentation.

Proof. Definition 4.21 gives functions λd from each component of S̃W (A, σ) to
G̃W (A, σ), so they give functions λt from S̃W (A, σ) to Λ(G̃W (A, σ)). Propo-
sition 4.14 exactly shows that they are semi-group morphisms, so by the direct
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sum property they define a unique semi-group morphism λt from S̃W (A, σ) to
Λ(G̃W (A, σ)). Now the universal property of Grothendieck groups shows that
this extends uniquely to a group morphism from G̃W (A, σ) to Λ(G̃W (A, σ)).

The fact that η is a section (or equivalently that λ1 is the identity) is clear
since on each component of S̃W (A, σ), λ1 is defined as the identity. So we have
a pre-λ-ring structure on G̃W (A, σ). It preserves the grading since on each
component of S̃W (A, σ), λd takes values in SW (K)′ if d is even, and in the
component itself if d is odd.

The fact that rdim is a graded augmentation amounts to showing that if
(V, h) has reduced dimension r, then Λd(V ) has reduced dimension

(
r
d

)
, which

is a direct consequence of proposition 4.2.

Remark 4.29. By examples 4.26 and 4.27, GW±(K)[Z/2Z] is a Γ-graded pre-
λ-ring, and the observations in remark 4.23 can be reformulated as: the natural
isomorphism between G̃W (K, Id) and GW±(K)[Z/2Z] is an isomorphism of
Γ-graded pre-λ-rings.

Theorem 4.30. The functor G̃W defines a functor from Brh(K) to the cate-
gory of Γ-graded pre-λ-rings.

Proof. Let f : (B, τ) → (A, σ) be a morphism in Brh(K). The only thing to
check is that the λ-operations are compatible with the ring morphism f∗, and
it is enough to check this on SW ε(B, τ). But if g ∈ SW ε(B, τ), then we have
in Brh(K)′:

f ◦ λd(g) = f ◦ ϕ(d)
(B,τ) ◦Altd(g)

= ϕ
(d)
(A,σ) ◦ f

⊗d ◦Altd(g)

= ϕ
(d)
(A,σ) ◦Altd(f ◦ g)

= λd(f ◦ g)

using proposition 2.11 and corollary 4.17.

Remark 4.31. If f : (B, τ) → (A, σ) is a morphism in Brh(K), then since f∗
is compatible with the λ-operations, we have λd(f) = f∗(λ

d(〈1〉τ )). Thus to be
able to compute the exterior powers of any ε-hermitian form, we just need to
be able to do the computation in the special case of diagonal forms 〈1〉σ for any
involution σ.

Example 4.32. Consider the split case A = EndK(V ). Then the involution σ
on A is adjoint to some bilinear form b on V , which is defined up to a scalar
factor. Then if d is even λd(b) is well-defined, while if d is odd it is only defined
up to this same factor. On the other hand, the element xd = λd(〈1〉σ) ∈
G̃W (A, σ) is obviously well-defined. We can understand the relation between
the two situations through functoriality. If we see the choice of b as a choice
of isomorphism f∗ from G̃W (A, σ) to G̃W (K, Id) ' GW±(K)[Z/2Z], then for
d even f∗(xd) = λd(b) (in the even component) does not depend on f since
xd ∈ GW (K), and for d odd f∗(xd) = λd(b) (in the odd component) depends
on f since xd ∈ GW ε(A, σ).
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It is easy to see that the decomposition

A = Sym(A, σ)⊕ Skew(A, σ)

is orthogonal for the bilinear form Tσ,a,b (recall proposition 2.28) for any ε-
symmetric a, b ∈ A∗. We write T+

σ,a,b (resp. T−σ,a,b) for the restriction of Tσ,a,b
to Sym(A, σ) (resp. Skew(A, σ)).

Proposition 4.33. Let (A, σ) be an algebra with involution over K, and let
a ∈ A∗ be ε-symmetric. If σ is orthogonal (resp. symplectic), then Λ2(A) is
naturally identified with Skew(A) (resp. Sym(A, σ)), and λ2(〈a〉σ) is isometric
to 〈 12 〉T

−
σ,a,a (resp. 〈 12 〉T

+
σ,a,a).

Proof. The right (A⊗K A)-module Alt2(A) is by definition (1− gA) · A⊗K A.
So since ϕ(2)

(A,σ) is given by the left (A ⊗K A)-module A (with twisted action),
we have

Λ2(A) = (1− gA) ·A ⊂ A.
But we saw in lemma 1.3 that under the twisted action, gA acts on A as σ if σ is
orthogonal, and −σ if σ is symplectic. So Λ2(A) is the subspace of A consisting
of anti-symmetrized elements if σ is orthogonal, and of symmetrized elements if
σ is symplectic. Since 2 in invertible in K, this means that Λ2(A) = Skew(A, σ)
if σ is orthogonal, and Λ2(A) = Sym(A, σ) if σ is symplectic (see for instance
the discussion in [11, 2.A]).

Since we know from remark 4.13 that the restriction of 〈a〉2σ to Λ2(A) is
〈2〉λ2(〈a〉σ), and from proposition 2.28 that 〈a〉2σ = Tσ,a,a, we may conclude.

4.5 Norm and determinant
The construction of the exterior powers λd(A) of an algebra A of degree n has a
very interesting special case, namely when d = n. Indeed, in this case λn(A) has
degree 1, so it is canonically isomorphic to K. This means that Altn(A) gives
an explicit Brauer-equivalence between A⊗n and K, which is a possible way to
prove without using cohomology that the Brauer group is a torsion group, and
that the exponent of A divides its degree (it is used for instance in [20], and the
idea is attributed to Tamagawa).

In the split case, this is how one defines the determinant of an endomorphism:
if f ∈ EndK(V ), it induces Λn(f) ∈ EndK(Λn(V )), which is a homothety since
Λn(V ) has dimension 1, and the corresponding scalar det(f) ∈ K is called the
determinant of f . We can imitate this definition in the general case: let A be
a central simple algebra over K and d ∈ N; there is an obvious action of Sd on
A⊗d, and we write Symd(A) ⊂ A⊗d for the subalgebra of fixed points under this
action. Then any x ∈ Symd(A) commutes with sd,A, so the application a 7→ xa

on A⊗d stabilizes Altd(A) = sd,AA
⊗d. This defines a canonical map

Symd(A) −→ λd(A).

The composition with the natural map A→ Symd(A) given by a 7→ a⊗ · · · ⊗ a
then defines a map

λd : A −→ Symd(A) −→ λd(A).

Clearly, λd is compatible with scalar extension, and when A = EndK(V ) is
split, this is the usual map from EndK(V ) to EndK(Λd(V )) induced by the
functoriality of exterior powers.
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Proposition 4.34. Let A be a central simple algebra over K, of degree n. Then
the map λn : A→ K is the reduced norm NrdA.

Proof. Since the reduced norm is usually defined by descent, and since the maps
λd are compatible with base change, we can check this when A is split. But
then as we discussed above λn is the determinant map, which is the reduced
norm in the split case.

Remark 4.35. This may be taken as a definition of the reduced norm, which
avoids the use of Galois descent. In more concrete terms, this definition can be
rephrased as: a⊗nsd,n = NrdA(a)sd,n.

There is also a classical notion of determinant for algebras with involution,
which can be defined as a descent of the determinant of a bilinear form (a
definition that avoids any splitting argument is given in [11, 7.2]). However,
it is only defined for algebras of even degree; the reason is clear if we use the
descent definition: when the degree n of A is odd, then A is already split, but
the bilinear form corresponding to the involution is only well-defined up to a
scalar factor, so its determinant is not well-defined (this problem does not exist
in even degree since the determinant of quadratic forms of even dimension is a
similitude invariant). We suggest a slightly more general definition that works
in arbitrary degree.

Definition 4.36. Let (A, σ) be a central simple algebra with involution of the
first kind over K, and let (V, h) be a ε-hermitian module over (A, σ). Then the
determinant of (V, h) (often called the determinant of h) is

det(V, h) = det(h) = λn(V, h) ∈ G̃W (A, σ),

with n = rdimA(V ). The determinant of (A, σ) is

det(A, σ) = det(σ) = det(〈1〉σ) ∈ G̃W (A, σ).

Remark 4.37. If σ is symplectic, then usually there is no particular notion of
det(σ), and indeed with our definition we always have det(σ) = 〈1〉 ∈ GW (K).

Remark 4.38. When the degree of A is even and σ is orthogonal, then with
this definition det(σ) ∈ GW (K) is a 1-dimensional quadratic form, so it has
the form 〈d〉 for some d ∈ K∗, and by construction the square class of d is the
usual determinant of σ as defined in [11] (we can check this in the split case).
We usually identify the two definitions in this case (so we identify a square class
wth the 1-dimensional form it defines).

Remark 4.39. When deg(A) = n is odd, then A is split and σ is orthogonal,
and det(σ) ∈ GW (A, σ). The choice of some bilinear form b such that σ =

σb gives an isomorphism G̃W (A, σ) ' GW±(K)[Z/2Z] that sends det(σ) to
〈det(b)〉 in the odd component. So while det(σ) is well-defined in G̃W (A, σ), its
interpretation as a square class indeed depends on the choice of some b, which
is the classical obstruction.

In the classical theory of bilinear forms, the pairing

Λp(V )⊗K Λq(V ) −→ Λp+q(V )
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induces a sort of duality when p+ q = n = dimK(V ). Indeed, since Λn(V ) has
dimension 1, by choosing a basis vector in Λn(V ) we get Λp(V ) ' Λq(V )∨. If
we restrain from choosing a basis of Λn(V ), then we get an isomorphism

Λp(V ) ' Λn(V )⊗K Λq(V )∨ ' Λn(V )⊗K Λq(V ∨),

using that Λd(V )∨ ' Λd(V ∨) for any d ∈ N. Now if V is equipped with a
non-degenerated bilinear form b, then using the identification V ' V ∨ given by
b, the isomorphism gives an isometry

(Λp(V ), λp(b)) ' (Λn(V ), λn(b))⊗K (Λq(V ), λq(b)).

So in the end we get an equality λp(b) = det(b)λq(b) in GW (K) (or possibly in
GW±(K) is b is anti-symmetric). We want to generalize this duality formula in
the non-split case. First we show a general lemma on modules:

Lemma 4.40. Let A and B be K-algebras, and let U , V andW be right modules
over, respectively, A, B and A ⊗K B. Then U ⊗K B is a right module over
A ⊗K B ⊗K Bop, where B has its standard structure of (B ⊗K Bop)-module
(here on the right). Likewise, HomK(V,W ) is a module over A ⊗K B ⊗K Bop

through the action of A⊗K B on W and the action of B on V .
There is a natural isomorphism

HomA⊗KB(U ⊗K V,W )
∼−→ HomA⊗KB⊗KBop(U ⊗K B,HomK(V,W ))

f 7−→ (u⊗ b 7→ (v 7→ f(u⊗ vb))) .

Proof. A simple calculation shows that all actions are indeed respected, and
that the inverse is given by g 7→ (u⊗ v 7→ g(u⊗ 1)(v)).

Now if A and B are central simple algebras over K and V is a Morita B-
A-bimodule, recall that V ∨ is a A-B-bimodule, and we write V −1 for the same
module seen as a Bop-Aop-bimodule.

Lemma 4.41. There is a natural isomorphism of A-B-bimodule V ∨ ' HomK(V,K),
given by either

HomA(V,A)
∼−→ HomK(V,K)

f 7−→ TrdA ◦f
or

HomB(V,B)
∼−→ HomK(V,K)

f 7−→ TrdB ◦f

Proof. It is an easy verification that the maps are well-defined and are bimodule
morphisms. To see that they are bijective it suffices to check that they are
injective, since the K-dimensions are the same. But if f is in the kernel, it
means that for any v ∈ V , we have for all a ∈ A:

TrdA(f(v)a) = TrdA(f(va)) = 0,

so f(v) = 0 since the trace form is non-degenerated.
Recall that the canonical identification HomA(V,A) ' HomB(V,B) is given

by
f(x)y = xf ′(y)

50



for all x, y ∈ V , where f ∈ HomB(V,B) corresponds to f ′ ∈ HomA(V,A). Then
to establish that the two isomorphisms correspond to each other through this
identification, we have to show that TrdB(f(x)) = TrdA(f ′(x)) for all x ∈ V .
It is enough to check this in the split case; then A ' EndK(U) ' U ⊗K U∨,
B ' EndK(W ) ' W ⊗K W∨, and V ' W ⊗K U∨. The reduced trace of A
is given by (u ⊗ ϕ 7→ ϕ(u)), and likewise for B. We have an identification
V ∨ ' U ⊗K W∨, such that if f corresponds to u⊗ ϕ, then for x = w ⊗ ψ ∈ V ,
f(x) = ψ(u)w ⊗ ϕ and f ′(x) = ϕ(w)u⊗ ψ. In the end:

TrdB(f(x)) = ψ(u)ϕ(w) = TrdA(f ′(x)).

Proposition 4.42. Let A be a central simple algebra over K, let V be a right
A-module of reduced dimension n, and let p, q ∈ N such that p + q = n. There
is a canonical isomorphism of (A⊗n ⊗K (Aop)⊗q)-modules

Φp,q(V ) : Altp(V )⊗K A⊗q
∼−→ Altn(V )⊗K Altq(V )−1.

Proof. If we apply the correspondance of lemma 4.40 to the shuffle map

Altp(V )⊗K Altq(V ) −→ Altn(V ),

we get a morphism of (A⊗n ⊗K (Aop)⊗q)-modules

Altp(V )⊗K A⊗q −→ HomK(Altq(V ),Altn(V )),

and applying lemma 4.41 we get a morphism

Altp(V )⊗K A⊗q −→ Altn(V )⊗K Altq(V )−1.

To prove that this is an isomorphism, it is enough to check it in the split case.
Using the same notations as in the proof of lemma 4.41, this becomes a morphism

Λp(W )⊗KU⊗p⊗KU⊗q⊗K(U∨)⊗q −→ Λn(W )⊗KU⊗n⊗K(Λq(W ))∨⊗K(U∨)⊗q,

and it is a lengthy but simple verification to see that this is the tensor product
of the usual isomorphism

Λp(W )
∼−→ Λn(W )⊗K (Λq(W ))∨

with U⊗n ⊗K (U∨)⊗q.

Remark 4.43. The module isomorphism Φp,q(V ) induces an isomorphism be-
tween the endomorphism algebras of either side: this gives a canonical isomor-
phism λp(A) ' λq(A)op. This is the isomorphism alluded to in [11, exercise
II.12]. In particular, when n = 2m, this defines an isomorphism λm(A) '
λm(A)op which corresponds to the so-called canonical involution on λm(A) (see
[11, §10.B]).

If there is an involution σ on A, then the right (Aop)⊗q-module Altq(V )−1

corresponds to the right A⊗q-module Altq(V )∗, and the right A⊗q ⊗K (Aop)⊗q-
module A⊗q corresponds to the right A⊗2q-module A⊗q, where we see A⊗q as
a left A⊗2q-module through the twisted sandwich action. So Φp,q(V ) becomes
an isomorphism of right A⊗n+q-modules

Altp(V )⊗K A⊗q
∼−→ Altn(V )⊗K Altq(V )∗.
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If furthermore we have a ε-hermitian form h on V , then this induces an isomor-
phism

Altp(V )⊗K A⊗q
∼−→ Altn(V )⊗K Altq(V ). (24)

In addition, we can consider the inverse of ϕ(2q)
(A,σ) in Brh(K) (recall 1.17):

ϕ
(2q)
(A,σ) : (K, Id) −→ (A⊗2q, σ⊗2q)

which is a hermitian form on A⊗q. So each module in (24) carries a hermitian
form.

Proposition 4.44. Let (A, σ) be an algebra with involution over K, let (V, h)
be a ε-hermitian module over (A, σ) of reduced dimension n, and let p, q ∈ N
such that p + q = n. Then the A⊗n+q-module isomorphism (24) induced by
Φp,q(V ) is an isometry

Altp(h)⊗ ϕ(2q)
(A,σ)

∼−→ Altn(h)⊗Altq(h).

Proof. To check that this gives an isometry, we can once again reduce to the
split case, and we use the same notations as in the proof of proposition 4.42.
We have bilinear forms b on U and c on W such that the following diagram in
commutative in Brh(K):

(B, τ) (A, σ)

(K, Id).

(V,h)

(W,c) (U,b)

They induce identifications U∨ ' U and W∨ ' W given by b̂ and ĉ, so in
particular A ' U ⊗K U and V 'W ⊗K U . Then the map (24) becomes

Λp(W )⊗K U⊗p ⊗K U⊗q ⊗K U⊗q −→ Λn(W )⊗K U⊗n ⊗K Λq(W )⊗K U⊗q,

and we can check that the hermitian forms which we have to show are isometric
are, on the left:

(x⊗u1⊗u2⊗u3, y⊗v1⊗v2⊗v3) 7→ λp(c)(x, y) · (u1⊗v1)⊗ (u2⊗v2)⊗ (u3⊗v3)

with and on the right:

(x⊗ u⊗ y⊗ v, x′ ⊗ u′ ⊗ y′ ⊗ v′) 7→ λn(c)(x, x′) · λq(c)(y, y′) · (u⊗ u′)⊗ (v⊗ v′).

Thus this is the tensor product of the usual isometry

λp(c) ' λn(c)λq(c)

with U⊗n+q.

We can finally prove:

Corollary 4.45. Let (A, σ) be an algebra with involution over K, let (V, h) be
a ε-hermitian module over (A, σ) of reduced dimension n, and let p, q ∈ N such
that p+ q = n. Then we have in G̃W (A, σ):

λp(h) = det(h) · λq(h).
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Proof. By definition, we have

λp(h) = ϕ
(n+q)
(A,σ) ◦

(
Altp(h)⊗ ϕ(2q)

(A,σ)

)
and

det(h) · λq(h) = ϕ
(n+q)
(A,σ) ◦ (Altn(h)⊗Altq(h))

so this follows directly from the previous proposition.

4.6 Some open questions and partial answers
We would like to point out some natural questions that arise from the study of
G̃W (A, σ) as a pre-λ-ring, and to which we cannot yet give a full answer.

λ-rings

The most obvious question is:

Question 1: Is G̃W (A, σ) a λ-ring ?

We recall what it means for a pre-λ-ring to be a λ-ring (see [24] or [25] for
more details). If R is any ring, there is actually a natural pre-λ-ring struc-
ture on Λ(R), and R is a λ-ring if the group morphism λt : R → Λ(R) is
actually a pre-λ-ring morphism. This is the case of most pre-λ-rings that
naturally arise in practice. Concretely, there are certain universal polynomi-
als Pn(x1, . . . , xn; y1, . . . , yn) and Pn,m(x1, . . . , xnm) with coefficients in Z, for
n,m ∈ N∗, such that a pre-λ-ring is a λ-ring iff for any x, y ∈ R, we have

λn(xy) = Pn(λ1(x), . . . , λn(x), λ1(y), . . . , λn(y)) (25)

λn(λm(x)) = Pn,m(λ1(x), . . . , λnm(x)). (26)

Remark 4.46. Since the λ-structure is functorial with respect to Brh(K), we
see that the fact that G̃W (A, σ) is a λ-ring only depends on the Brauer class of
A.

If R is any pre-λ-ring, and x ∈ R, it is called finite-dimensional if λt(x) ∈
R[[t]] is actually a polynomial. Its dimension is then the degree of λt(x). A
λ-ring enjoys the following property, which we call the dimension property :
the unit 1 ∈ R is 1-dimensional, and a product of 1-dimensional elements is
1-dimensional. Our first hint that G̃W (A, σ) might just be a λ-ring is:

Proposition 4.47. Let (A, σ) be an algebra with involution over K. Then
G̃W (A, σ), with its canonical structure of pre-λ-ring, satisfies the dimension
property.

We will actually show something a little stronger. We take the following
definition from [25]: if R is an augmented pre-λ-ring (see the discussion before
proposition 4.28), with augmentation d : R → Z, a positive structure on R is a
subset R>0, whose elements are called positive, such that:

• 0 6∈ R>0;
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• R>0 ∪ {0} is stable under sums, products and operations λd;

• any element of R is a difference of two positive elements;

• any x ∈ R>0 is finite-dimensional, with dimension d(x), and λd(x) ∈ R∗;

• the 1-dimensional positive elements form a subgroup of R∗.

The 1-dimensional positive elements of R are called line elements. If R is a
graded pre-λ-ring, then a homogeneous positive structure is a positive structure
which is a homogeneous subset of R (so the homogeneous components of positive
elements are positive), and in this case we just have to verify the conditions for
homogeneous elements. It is then easy to show:

Lemma 4.48. Let R be a pre-λ-ring with a positive structure. Then all 1-
dimensional elements of R are line elements. In particular, R satisfies the
dimension property.

Proof. Let x ∈ R be 1-dimensional, and write x = x1 − x2 with xi ∈ R>0, and
di = d(xi) ∈ N∗. Then λt(x)λt(x2) = λt(x1), so xλd2(x2) = λd1(x1). Now
λdi(xi) is a line element by hypothesis, so x is also a line element.

We have to be careful that if x ∈ R is positive, then d(x) is its dimension,
but for a general x, we can have d(x) = 1 without x having finite dimension.
Recall from proposition 4.28 that G̃W (A, σ) is augmented.

Lemma 4.49. Let (A, σ) be an algebra with involution over K. Then S̃W (A, σ)

defines a homogeneous positive structure on G̃W (A, σ).

Proof. Everything is more or less obvious, except maybe the invertibility prop-
erties. They follow from the fact that if x is positive and homogeneous of
dimension n then λn(x) = det(x) so it is invertible, and if x is a line element its
multiplicative inverse is itself.

Lemmas 4.48 and 4.49 prove proposition 4.47. One of the main interest of
positive structures is that to show that R is a λ-ring, it is enough to establish
conditions (25) and (26) when x and y are positive, and actually it is enough to
consider a subset S of R>0 such that every positive element is a sum of elements
in S (see [25, 3.1]). In particular, if we have a homogeneous positive structure,
then it is enough to consider homogeneous positive elements. The polynomials
Pn and Pn,m are defined in such a way that any sum of line elements satisfies
conditions (25) and (26), which is the usual way to show that GW (K) is a λ-ring
(it is more or less the method used in [16]). Furthermore, Zibrowius shows the
following lemma:

Lemma 4.50 ([25], lemma 3.4). Let R be a pre-λ-ring with a positive structure.
Then two positive elements x and y of dimension at most 2 satisfy conditions
(25) and (26) iff they satisfy (25) for n = 2, 3, 4, which is to say:

(i) λ2(xy) = x2λ2(y) + λ2(x)y2 − 2λ2(x)λ2(y);

(ii) λ3(xy) = xyλ2(x)λ2(y);

(iii) λ4(xy) = (λ2(x))2(λ2(y))2.
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This allows us to show:

Proposition 4.51. Let (A, σ) be a split algebra with involution over K. Then
G̃W (A, σ) is a λ-ring.

Proof. We are reduced to the case (A, σ) = (K, Id) by remark 4.46. Since the
positive elements are additively generated by 1-dimensional diagonal forms (in
the even and the odd components) and the anti-symmetric hyperbolic plane (in
the even and the odd components), it is enough to check the conditions for these
elements, and since they all have dimension at most 2, we can use lemma 4.50.
The formulas in the lemma are immediate if x or y has the form 〈a〉 (in either
component), so only the case of two anti-symmetric planes remains. It is then
an immediate computation, using that x2 = y2 = xy = 2H (where H is the
symmetric hyperbolic plane), and λ2(x) = λ2(y) = 〈1〉.

Remark 4.52. As far as we know, even the fact that GW±(K) is a λ-ring had
not appeared explicitly in the literature, most likely because few people care
about GW±(K).

We can also prove:

Proposition 4.53. Let (A, σ) be an algebra with involution over K of index 2.
Then G̃W (A, σ) is a λ-ring.

Proof. We are reduced to the case where (A, σ) = (Q, γ) is a quaternion division
algebra with its canonical involution. Using lemma 4.50, we have to show those
three identities when x and y are of the form 〈a〉 for a ∈ K∗, H−1 (the anti-
symmetric hyperbolic plane), 〈a〉γ with a ∈ K∗, or 〈z〉γ with z a non-zero
pure quaternion. The cases where x or y is 〈a〉 are immediate, and the case
x = y = H−1 follows from proposition 4.51. Also note that we can easily
replace 〈a〉γ by 〈1〉γ for any a ∈ K∗.

Note that when x and y are both of dimension 2, then det(xy) = 〈1〉, since
according to proposition 3.22, in this case xy is either hyperbolic (of reduced
dimension 4) or a multiple of a 2-fold Pfister form. This remark takes care of
equation (iii) since it can be rephrased as det(xy) = det(x)2 det(y)2, and of
equation (ii) since using corollary 4.45, we have λ3(xy) = det(xy)xy, λ2(x)x =
det(x)x = x and likewise λ2(y)y = det(y)y = y.

It remains to show equation (i) when x any y are both of dimension 2, and
are not both H−1. Thus we have five cases to check. Note that since in each case
the dimensions coincide on both sides, we may as well prove that the equality
holds in W (K) instead of GW (K).

We first recall two formulas that are easy to establish, for any a, b, c ∈ K∗:

λ2(〈〈a, b〉〉) = 2(〈〈a, b〉〉 − 1) (27)
〈〈a, c〉〉+ 〈〈b, c〉〉 = 〈〈ab, c〉〉+ 〈〈a, b, c〉〉 ∈W (K). (28)

If x = y = 〈1〉γ , the equation is:

λ2(〈2〉nQ) = 〈2〉nQ + 〈2〉nQ − 2

which follows from (27).

55



If x = H−1 and y = 〈1〉γ , then xy is hyperbolic. Let us take z1, z2 pure
quaternions that anti-commute. Then xy = 〈z1,−z1〉, and nQ = 〈〈z2

1 , z
2
2〉〉.

Equation (i) then becomes:

λ2(〈z1,−z1〉γ) = 2H · 〈1〉+ 〈1〉 · 〈2〉nQ − 2〈1〉〈1〉.

But

λ2(〈z1,−z1〉γ) = λ2(〈z1〉γ) + 〈z1〉γ〈−z1〉γ + λ2(〈−z1〉γ)

= 2〈−z2
1〉+ 〈2z2

1〉〈〈z2
1 ,−z2

2〉〉

so we can check that the equation can be rearranged as

〈〈−1, z2
1〉〉 = 〈2〉〈〈z2

1 , z
2
2〉〉+ 〈2〉〈〈z1

1 ,−z2
2〉〉 (29)

which follows from (28).
If x = H−1 and y = 〈z1〉γ , then xy is hyperbolic, so xy = 〈1,−1〉γ . Let us

choose some z2 that anti-commutes with z1. The equation then becomes:

λ2(〈1,−1〉γ) = 2H · 〈−z2
1〉+ 〈−2z2

1〉〈〈z2
1 , z

2
2〉〉 − 2〈−z2

1〉.

But since λ2(〈1,−1〉γ) = 2 − 〈2〉nQ, this can be rearranged to give the same
equation as (29).

If x = 〈z〉γ and y = 〈1〉γ , then taking some z2 that anti-commutes with z,
the equation becomes

λ2(2H−1) = 〈−2z2〉〈〈z2, z2
2〉〉+ 〈〈−2z2〉〉nQ − 2〈−z2〉.

But since λ2(2H−1) = 2(H+ 1), this can again be rearranged as (29).
Fincally, if x = 〈z1〉γ and y = 〈z2〉γ, then we choose z0 that anti-commutes

with both z1 and z2. The equation becomes:

λ2(〈−TrdQ(z1z2)〉ϕz1,z2) = 〈2z2
1z

2
2〉〈〈z2

1 ,−z2
0〉〉+〈2z2

2z
2
1〉〈〈z2

2 ,−z2
0〉〉−2〈−z2

1〉〈−z2
2〉,

which using (27) gives:

2ϕz1,z2 = 〈2z2
1z

2
2〉(〈〈z2

1 ,−z2
0〉〉+ 〈〈z2

2 ,−z2
0〉〉) + 〈〈−1, z2

1z
2
2〉〉.

Now ϕz1,z2 = 〈〈z2
1 , z

2
2z

2
0〉〉 = 〈〈z2

2 , z
1
2z

2
0〉〉 so in particular 2ϕz1,z2 represents 2z2

1z
2
2 ;

also, 〈〈−1, z2
1z

2
2〉〉 represents −2z2

1z
2
2 , so in the end we can rewrite the equation

as:
〈〈−1, z2

1 , z
2
2z

2
0〉〉+ 〈〈−1, z2

1z
2
2〉〉 = 〈〈z2

1 ,−z2
0〉〉+ 〈〈z2

2 ,−z2
0〉〉.

Using (28), this means:

〈〈−1, z2
1 , z

2
2z

2
0〉〉+ 〈〈−1, z2

1z
2
2〉〉 = 〈〈−z2

0 , z
2
1z

2
2〉〉+ 〈〈−z2

0 , z
2
1 , z

2
2〉〉.

We can check using 〈〈z2
1 , z

2
0〉〉 = 〈〈z2

2 , z
2
0〉〉 that the 2-fold and 3-fold Pfister forms

on either side are the same, which concludes.

Those are as of now the only cases of question 1 that we know how to
solve. Note that if it had a positive answer in general, this would have direct
consequences for (twisted) involution trace forms, since it would give universal
formulas for λd(Tσ,a) = λd(〈1〉σ〈a〉σ) in terms of the λi(〈1〉σ) and λj(〈a〉σ). For
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instance, the formula for λ2(xy) in a λ-ring yields that if G̃W (A, σ) is a λ-ring,
then (assuming for simplicity that σ is orthogonal and a ∈ A∗ is symmetric):

λ2(Tσ,a) = TσT
−
σa + T−σ Tσa − 2T−σ T

−
σa .

Similarly, from the formula for λ2(λ2(x)), we would get

λ2(T−σ ) = 〈1〉σλ3(〈1〉σ)− λ4(〈1〉σ),

so if for instance deg(A) = 4 this would mean

λ2(T−σ ) = det(σ)(Tσ − 〈1〉).

Natural operations on G̃W (A, σ)

If we consider not only an individual GW (K) but the family of all GW (L) for
all field extensions L/K then Serre shows in [8] that the λ-operations play a
very special role. Indeed, let Field/K be the category of field extensions of K.
Then W is a functor from Field/K to the category of W (K)-algebras. For any
r ∈ N∗, if we write Quadr(L) for the set of non-degenerated quadratic forms of
dimension r over L, then Quadr defines a functor from Field/K to the category of
sets. A natural transformation from Quadr to W (seen as a set-valued functor)
is called a Witt invariant of Quadn. The set Inv(Quadr,W ) of such invariants
is naturally a W (K)-algebra, and Serre shows that it is actually a free module
with basis (λd)d6r.

Now let (A, σ) be an algebra with involution over K. Then we have a
functor W̃ (A, σ) from Field/K to the category of W̃ (A, σ)-algebras, sending
L/K to W̃ (AL, σL). Furthermore, we can define a functor Hermr,ε(A, σ) for
any r ∈ N∗ such that Hermr(A, σ)(L) is the set of elements in SWε(AL, σL)

with reduced dimension r. Then we have a W̃ (A, σ)-algebra of invariants
Inv(Hermr,ε(A, σ), W̃ (A, σ)).

Question 2: Is Inv(Hermr,ε(A, σ), W̃ (A, σ)) generated by (λd)d6r as a
W̃ (A, σ)-module ?

We do not have as many hints that the answer may be positive as we did
for question 1, but we still conjecture it should be. In the case of quadratic
forms, Serre proves his result using methods of specialization with respect to
valuations; it is natural to expect that a similar theory for mixed Witt rings may
be useful to address question 2. Note at least that that the answer to question
2 only depends on the Brauer class of A (for fixed r and ε), and that the answer
is positive for split algebras, as a direct consequence of Serre’s theorem.

Remark 4.54. It is not true in general when A is not split that the λd are
independent invariants, even over W (K). Indeed, if we consider the case of a
division quaternion algebra Q with its canonical involution γ, then it is not hard
to see that nQ(1− λ2) = 0 and nQλ1 = 0 where nQ is the norm form.

Pre-λ-rings of linear type

We may first want to study a weaker version of question 2, that can be asked
about a single G̃W (A, σ) (instead of the family of those algebras obtained by
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field extensions). If question 2 has a positive answer, then it is certainly true that
for any r ∈ N∗, any ε = ±1 and any i, j 6 r, there exist elements Nr

ε (i, j, d) ∈
G̃W (A, σ) for all integers d 6 0 such that

λi(x)λj(x) =

r∑
d=0

Nr
ε (i, j, d)λd(x) (30)

for all x ∈ Hermr,ε(A, σ)(K). This is because x 7→ λi(x)λj(x) is obviously an
invariant since it is compatible with field extensions.

For instance, for quadratic forms it is not too difficult to see that we can
take Nr(i, j, d) =

( r−d
i+j−d

2

)(
d

d+i−j
2

)
(which is understood to be 0 when i+ j and d

do not have the same parity).

In general, let R be a Γ-graded pre-λ-ring. We say that R is of linear type
if it admits a homogeneous positive structure R>0 such that for every r ∈ N∗,
every g ∈ Γ, and every i, j 6 r, there are elements Nr

g (i, j, d) ∈ R such that the
formula (30) holds for any positive homogeneous x of dimension r in Rg. The
reason for this name is that in that case, for any polynomial P ∈ R[x1, . . . , xr],
there exists Q ∈ R[x1, . . . , xr] of degree 1 (depending on P , r and g) such that

P (λ1(x), . . . , λr(x)) = Q(λ1(x), . . . , λr(x))

for any positive homogeneous x of dimension r in Rg. In other words, any
polynomial expression in the λi(x) is equal to a linear one.

Note that this is not true in general even for λ-rings, since in general the
operations λi are algebraically independent (this is the case for free λ-rings).

Question 3: Is G̃W (A, σ) of linear type, for it canonical homogeneous pos-
itive structure given by S̃W (A, σ) ?

As we explained, a positive answer to question 2 implies a positive answer for
question 3. In particular, it has a positive answer for split algebras, since Serre’s
theorem takes care of quadratic forms (in the even or the odd component), and
the case of anti-symmetric forms is even easier since there is only one isometry
class in each dimension. In general, we see that the answer only depends of the
Brauer class of A.

Apart from the split case, there are other reasons to believe that question 3
may have a positive answer. First, corollary 4.45 settles the case where i or j
is equal to r in (30), and shows that we can take Nr(r, j, d) = δd,r−j . We can
also give an elementary treatment of the case i = j = 1.

Proposition 4.55. Let (A, σ) be an algebra with involution over K, and let
(V, h) ∈ SWε(A, σ) of reduced dimension r ∈ N∗. Then in G̃W (A, σ) we have

h2 =

(
εTB −

(
r

2

)
H
)

+ 2λ2(h)

where TB is the trace form of the algebra B = EndA(V ).

Proof. The fundamental observation is that if τ = σh, Tτ = T+
τ + T−τ while

TB = T+
τ +〈−1〉T−τ . The formula follows from basic manipulation after injecting

the relations h2 = Tτ and λ2(h) = 〈2〉T−ετ .
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5 Mixed cohomology

In this section, we define a fundamental filtration (actually two) of W̃ (A, σ),
analogous to the fundamental filtration of W (K), and study some of the basic
properties of its associated graded ring, which we see as an analogue of the
cohomology ring H∗(K,Z/2Z) (which we denote simply H∗(K)).

5.1 The fundamental filtration
Recall from proposition 2.32 and (2.8) the ring morphisms

r̃dim2 : W̃ (A, σ) −→ Z/2Z[Z/2Z]

and
rdim2 : W̃ (A, σ) −→ Z/2Z.

Definition 5.1. Let (A, σ) be an algebra with involution over K. Then we call

I(A, σ) = Ker(rdim2)

Ĩ(A, σ) = Ker(r̃dim2)

respectively the fundamental ideal and the homogeneous fundamental ideal of
W̃ (A, σ). The filtrations (In(A, σ))n and (Ĩn(A, σ))n are respectively called the
fundamental filtration and the homogeneous fundamental filtration.

By construction, I(A, σ) is a maximal ideal such that I(A, σ) ∩ W (K) =

I(K), and Ĩn(A, σ) is a homogeneous ideal. Note that when A is not split,
then since its index is even we see that by definition rdim2 = r̃dim2, so the
homogeneous and non-homogenous filtrations actually coincide. On the other
hand, when A is split the situation is quite different, and it is not clear which
version to use. The homogeneous one allows a uniform treatment of split and
non-split algebras, but the non-homogeneous one is arguably more natural, since
I(A, σ) is the unique prime ideal of W̃ (A, σ) of residual characteristic 2 (see
proposition 6.18). For those reasons, we will discuss both versions here.

We start with the homogeneous version. For any n ∈ N, we write

Ĩn(A, σ) = In0 (A, σ)⊕ In+(A, σ)⊕ In−(A, σ)

for the homogeneous decompositions of those ideals with respect to Γ. Note that
of course I0

0 (A, σ) = W (K) and I0
ε (A, σ) = Wε(A, σ). Furthermore, I0(A, σ) =

I(K), and if A is not split then Iε(A, σ) = Wε(A, σ), while on the other hand
I+(K, Id) = I(K) and I−(K, Id) = 0.

Proposition 5.2. Let (A, σ) be an algebra with involution over K, and let
n ∈ N∗. Then Ĩn(A, σ) = In−1(K)Ĩ(A, σ).

Proof. The formulas for n = 1 follow directly from the definition, as we noted
just before the proposition. The proof for a general n ∈ N∗ can be easily
obtained by induction of we can show the case n = 2. A quick examination
shows that the only non-trivial part is that Iε(A, σ)Iε(A, σ) ⊂ I2(K). Let
x, y ∈ Iε(A, σ). Then xy ∈ I2(K) iff disc(xy) = 1. Now this may be checked

59



after generic splitting of A, since if L is the function field of the Severi-Brauer
variety of A, then the map K∗/(K∗)2 → L∗/(L∗)2 is injective. But indeed, in
the split case xy is a product of elements with even dimension, so its discriminant
is trivial.

For the non-homogeneous version, it is enough to treat the split case, since
when A is not split it coincides with the homogeneous one, and we naturally
start with the case (A, σ) = (K, Id). Then we can use a general lemma:

Lemma 5.3. Let R be a commutative ring, and let J ⊂ R be an ideal. We define
two ideals in R[Z/2Z]: Ĩ = J ⊕ J and I = ε−1(J) (where ε is the augmentation
map). Then for any n ∈ N∗, we have Ĩn ⊂ In ⊂ Ĩn−1, and

Ĩn = Jn ⊕ Jn

In = Ĩn−1 ∩ ε−1(Jn).

Proof. The formula for Ĩn is easily proved by induction on n, and Ĩn ⊂ In is
obvious since Ĩ ⊂ I. We show the formula for In by induction. The case n = 1
is the definition. Suppose the formula holds up to n ∈ N∗.

Let x ∈ In and y ∈ I. Then x = (x0, x1) with x0, x1 ∈ Jn−1 and x0+x1 ∈ Jn
by induction hypothesis, and y = (y0, y1) with y0 + y1 ∈ J . Therefore, a direct
computation shows that xy = (z0, z1) with z0, z1 ∈ Jn and z0 + z1 ∈ Jn+1.

Conversely, let x ∈ Ĩn ∩ ε−1(Jn+1), and write x = (x0, x1). Then we can
write x0 = ay0 with a ∈ J and y0 ∈ Jn−1, and x0 + x1 = by1 with b ∈ J and
y1 ∈ Jn. Define y = (y0,−y0) and y′ = (0, y1); by induction hypothesis we have
y, z ∈ In. We can then conclude since x = ay + by′.

We can then apply that to W̃ (K, Id) ' W (K)[Z/2Z]. Let us write π0 and
π1 for the projections of W̃ (K, Id) on respectively the even and odd component.
In particular, the augmentation map is ε = π0 + π1.

Proposition 5.4. Let n ∈ N∗. Then

In(K, Id) = {(q0, q1) ∈ In−1(K)⊕ In−1(K) | q0 + q1 ∈ In(K)}.

In particular, the filtration (Id(K, Id))d is separated and there is a natural
isomorphism

In(K, Id)
(ε,π0)−−−−→ In(K)⊕ In−1(K).

Proof. The statement about In(K, Id) is a direct application of lemma 5.3,
with R = W (K) and J = I(K). It is then immediate that (ε, π0) is a group
isomorphism from In(K, Id) to In(K) ⊕ In−1(K). The statement about the
separation of the filtration then follows from the Hauptsatz.

5.2 Homogeneous mixed cohomology
Definition 5.5. Let (A, σ) be an algebra with involution over K. We define the
homogeneous mixed cohomology ring H̃∗(A, σ) as the graded ring associated to
the homogeneous fundamental filtration. The group H̃n(A, σ) is called the nth
homogeneous mixed cohomology group of (A, σ), and we write

ẽn : Ĩn(A, σ) −→ H̃n(A, σ)

for the canonical projection.
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Then H̃∗(A, σ) is a commutative (Γ × Z)-graded H∗(K)-algebra, which is
functorial in (A, σ) with respect to Brh(K). We write the homogeneous decom-
position:

H̃n(A, σ) = Hn
0 (A, σ)⊕Hn

+(A, σ)⊕Hn
+(A, σ).

We see that H̃0(A, σ) is Z/2Z if A is not split, and Z/2Z⊕ Z/2Z if A is split.

Proposition 5.6. Let (A, σ) be an algebra with involution over K. Then

H̃∗(A, σ) = H̃0(A, σ)⊕H∗(K)H̃1(A, σ).

In particular, Hn
0 (A, σ) = Hn(K) for any n ∈ N∗.

Proof. This is a direct consequence of proposition 5.2.

Proposition 5.7. Let (A, σ) be an algebra with involution over K. Then the
standard automorphisms of W̃ (A, σ) induce the identity on H̃∗(A, σ). In par-
ticular, H̃∗(A, σ) only depends on the Brauer class of A, up to a canonical
isomorphism.

Proof. A standard automorphism acts by multiplication by some 〈λ〉 on Inε (Aσ),
but clearly 〈λ〉x ≡ x modulo In+1

ε (A, σ).

If we wish to perform computations in H̃∗(A, σ), it is natural to introduce
the equivalents of the Galois symbols.

Definition 5.8. Let (A, σ) be an algebra with involution over K of even degree.
For any a ∈ A∗ ε-symmetric, and a1, . . . , an ∈ K∗, we set

〈〈a1, . . . , an; a〉〉σ = 〈〈a1, . . . , an〉〉 · 〈a〉σ ∈ Ĩn+1(A, σ)

and we call such an element a mixed Pfister form over (A, σ). We also define

(a1, . . . , an; a)σ = ẽn+1(〈〈a1, . . . , an; a〉〉σ) = (a1, . . . , an) ∪ (a)σ ∈ H̃n+1(A, σ)

and call such elements mixed symbols.

We call the usual Galois symbols in H∗(K) pure symbols, and we use the
generic term “symbol” for both pure and mixed symbols in H̃∗(A, σ).

Remark 5.9. If A is a division algebra then the symbols additively generate
H̃∗(A, σ), but it is not the case in general.

Now to get a good understanding of H̃n(A, σ), at least when A is a division
algebra (which is enough by functoriality), we would need to find the relations
between the symbols, analogously to what Milnor’s conjecture does for pure
symbols. This is still a work in progress. We can however give a good description
of the cup-products of symbols. We clearly have

(a1, . . . , an; a)σ ∪ (b1, . . . , bm; b)σ = (a1, . . . , bm) ∪ ((a)σ ∪ (b)σ)

so it is enough to compute the cup-products of 1-symbols (a)σ ∈ H̃1(A, σ).
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Proposition 5.10. Let (A, σ) be an algebra with involution of degree n = 2m
over K. Let 〈a〉σ, 〈b〉σ ∈Wε(A, σ). Then

(a)σ∪(b)σ =

{
(− det(σ) NrdA(a),−NrdA(ab)) +m[A] ∈ H2(K) if ε = 1
m[A] ∈ H2(K) if ε = −1.

Proof. The class in H2(K) we need to compute is exactly the Clifford invariant
of 〈a〉σ〈b〉σ = Tσ,a,b. Since its dimension is divisible by 4 and its discriminant
is trivial, this is the same as its Hasse invariant (which is the second Stiefel-
Whitney class). Let τ be the adjoint involution on M2(A) of the form 〈a, b〉σ.
Then the first step is recognizing that

T+
τ = T+

σa + 〈2〉Tσ,a,b + T+
σb
.

This is just a rephrasing of

λ2(〈a, b〉σ) = λ2(〈a〉σ) + 〈a〉σ〈b〉σ + λ2(〈b〉σ)

using propositions 2.28 and 4.33. Since the Clifford invariant only depends on
the Witt class we get:

e2(Tσ,a,b) =w2(〈−1〉T+
τ + T+

σa + T+
σb

)

=w2(〈−1〉T+
τ ) + w2(T+

σa) + w2(T+
σb

)

+ (det(T+
τ ),det(T+

σa)) + (det(T+
τ ),det(T+

σb
)) + (det(T+

σa),det(T+
σb

)).

Now the Hasse invariants and the determinants of forms of type T+
θ have

been computed by Quéguiner, see [18, §2.2,2.3]. We can collect the results:

det(T+
σa) = 2m NrdA(a) det(σ)

det(T+
τ ) = NrdA(ab)

w2(T+
σa) =

{ (
m
2

)
(−1,−1) +

(
m
2

)
[A] if ε = −1

(m+ 1)(−2,det(σ) NrdA(a)) +
(
m+1

2

)
[A] if ε = 1

w2(〈−1〉T+
τ ) =

{
m[A] if ε = −1
(2,NrdA(ab)) +m(−1,−1) +m[A] if ε = 1.

The result then follows by a direct computation, using the fact that (−1, 2) = 0
and that if ε = −1 then NrdA(a) and NrdA(b) have the same square class, which
coincides with det(σ) (see [11, 7.1]).

Remark 5.11. Note that the formula is indeed symmetric in a and b, since
(−det(σ) NrdA(a),−NrdA(ab)) = (−det(σ) NrdA(b),−NrdA(ab)).

Example 5.12. If A is not split, then there is a symplectic involution θ on the
division algebra D Brauer-equivalent to A, and we can reduce to computations
in H̃∗(A, σ) to computations in H̃∗(D, θ), and according to proposition 5.7 the
isomorphism does not depend on the choice of Morita equivalence. Then if D
is a quaternion algebra, (a)θ ∪ (b)θ is [D] if a, b ∈ K∗, and (a2, b2) + [D] if a and
b are pure quaternions. This is coherent with proposition 3.22.

If D is not a quaternion algebra, then (a)θ∪(b)θ is 0 if a and b are symmetric,
and (−NrdD(a),−NrdD(b)) if a and b are anti-symmetric.
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Corollary 5.13. Let (A, σ) be an algebra with involution of even degree over
K. Then a product of symbols in H̃∗(A, σ) is a symbol, except possibly if A is a
non-division algebra of index 2 and odd coindex.

Proof. We only have to check that (a)σ ∪ (b)σ is a Galois symbol. If A is split,
then this follows immediately from proposition 5.10. If the index of A is strictly
greater than 2, then its degree is divisible by 4, so it also follows from the
proposition. Now assume the index is 2. Then the m in the proposition is the
coindex, so if it is even then we still get a symbol. Finally, if A is a division
algebra, so m = 1 and A is a quaternion algebra, then the result follows from
the observation that if z1 and z2 are non-zero pure quaternions, (z2

1 , z
2
2) and [A]

have a common slot (for instance z2
1), so their sum is a symbol (or directly from

proposition 3.22).

5.3 Non-homogeneous mixed cohomology
We make similar definitions as in the homogeneous case.

Definition 5.14. Let (A, σ) be an algebra with involution over K. We define
the mixed cohomology ring H∗(A, σ) as the graded ring associated to the funda-
mental filtration. The group Hn(A, σ) is called the nth mixed cohomology group
of (A, σ), and we write

en : In(A, σ) −→ Hn(A, σ)

for the canonical projection.

Then H∗(A, σ) is a commutative Z-graded H∗(K)-algebra, which is functo-
rial in (A, σ) with respect to Brh(K), so in particular it only depends on the
Brauer class of A up to a non-canonical isomorphism (this is different from the
homogeneous case). We see that H0(A, σ) is Z/2Z whether or not A is split. Of
course if A is not split Hn(A, σ) = H̃n(A, σ) and all the previous results apply.
Thus we will focus more on the split case.

Proposition 5.15. Let n ∈ N∗. There is a commutative diagram where the
horizontal maps are isomorphisms:

In(K, Id) In(K)⊕ In−1(K)

Hn(K, Id) Hn(K)⊕Hn−1(K).

(ε,π0)

en en⊕en−1

(∂1,∂2)

Proof. The first line has been established in proposition 5.4. The second line is
then a direct consequence using Hn(K) = In(K)/In+1(K). The vertical maps
make the diagram commute by definition.

Remark 5.16. In the above diagram we could have used π1 instead of π0. In-
deed, we can characterize In(K, Id) be the fact that en−1(π0(x)) and en−1(π1(x))
exist and are equal, and then ∂2(en(x)) is this common value.

Corollary 5.17. Let (A, σ) be a split algebra with involution over K. Then
the fundamental filtration of W̃ (A, σ) is separated. Furthermore, any choice
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of isomorphism f : (A, σ) → (K, Id) in Brh(K) induces an isomorphism of
Z-graded H∗(K,Z/2Z)-modules:

H∗(A, σ)
(∂f ,∂2)−−−−→ H∗(K)⊕H∗(K)[−1].

The morphism ∂2 is actually independent of the choice of f , while ∂f (x) is
only well-defined modulo ∂2(x) ∪H1(K,Z/2Z). Precisely:

∂〈λ〉f (x) = ∂f (x) + (λ) ∪ ∂2(x).

Proof. Since I(A, σ) is functorial in (A, σ) (relative toBrh(K)), the fact that the
filtration is separated follows from the case of (K, Id). Similarly the existence of
the isomorphism is a direct consequence of proposition 5.4 since we are choosing
an isomorphism f∗ : W̃ (A, σ)

∼→ W̃ (K, Id).
Taking f ′ = 〈λ〉f amounts to modifying W̃ (K, Id) by the standard automor-

phism 〈λ〉∗, which means multiplying the odd component by 〈λ〉. We can then
conclude if we consider the following commutative diagram

In(K, Id) In(K, Id)

In(K)⊕ In−1(K) In(K)⊕ In−1(K)

〈λ〉∗

(ε,π0) (ε,π0)

α

with α(x, y) = (〈λ〉x+ 〈〈λ〉〉y, y), which is easy to establish.

Remark 5.18. In particular, if we write H∗h(A, σ) = Ker(∂2), then we have a
well-defined isomorphism ∂1 : H∗h(A, σ)

∼→ H∗(K) (the h stands for “homoge-
neous”, see proposition 5.19) for an explanation).

We now give a comparison of homogeneous and non-homogeneous cohomol-
ogy, especially in the split case (since otherwise they coincide). From lemma
5.3, we see that in the split case

Ĩn(A, σ) ⊂ In(A, σ) ⊂ Ĩn−1(A, σ),

and in the non-split case this is even more obvious since the first inclusion is an
equality. In particular there are natural maps

H̃n(A, σ) −→ Hn(A, σ) −→ H̃n−1(A, σ).

When A is not split, they are, from left to right, the identity and the zero map.

Proposition 5.19. Let (A, σ) be a split algebra with involution over K. Then
the image of H̃∗(A, σ)→ H∗(A, σ) is H∗h(A, σ). More precisely, for any choice
of f : (A, σ)→ (K, Id) in Brh(K), we have a commutative diagram of Z-graded
H∗(K)-modules, where the vertical maps are isomorphisms:

H̃∗(A, σ) H∗(A, σ) H̃∗(A, σ)[−1]

H∗(K)⊕H∗(K) H∗(K)⊕H∗(K)[−1] H∗(K)[−1]⊕H∗(K)[−1]

(π0,π1) (∂f ,∂2) (π0,π1)

α β

with α(x, y) = (x+ y, 0) and β(x, y) = (y, y).
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Proof. Note that for the degree 0 components, our description of H0(A, σ) and
H̃0(A, σ) shows that the first row is

Z/2Z⊕ Z/2Z −→ Z/2Z −→ 0

which corresponds to the second row. We now look at the degree n components,
for any n ∈ N∗.

We can use functoriality through f to reduce to the diagram

H̃n(K, Id) Hn(K, Id) H̃n−1(K, Id)

Hn(K)⊕Hn(K) Hn(K)⊕Hn−1(K) Hn−1(K)⊕Hn−1(K).

(π0,π1) (∂1,∂2) (π0,π1)

α β

To show that the left-hand square commutes, take x = ẽn(q0, q1) ∈ H̃n(K, Id)
(so q0, q1 ∈ In(K)). Then by definition of ∂1 and ∂2, if we go through the
bottom path we get (en(q0) + en(q1), 0), and if we go through the upper path
we get (en(q0 + q1), en−1(q0)), so indeed the square commutes.

For the right-hand square, take x = en(q0, q1) ∈ Hn(K, Id) (so q0, q1 ∈
In−1(K) and q0 + q1 ∈ In(K)). The going through the bottom path we get
(en−1(q0), en−1(q0)), and going through the upper path we get (en−1(q0), en−1(q1)),
so this square commutes too.

Corollary 5.20. Let (A, σ) be an algebra with involution over K. Then there
is a natural exact complex of Z-graded H∗(K)-modules

· · · → H̃∗(A, σ)[n+ 1]→ H∗(A, σ)[n+ 1]→ H̃∗(A, σ)[n]→ H∗(A, σ)[n]→ . . .

Proof. The only thing to prove is the exactness. If A is not split then every other
map is the identity and the other ones are zero. If A is split, then this follows
directly from proposition 5.19, since the exactness is immediate on the bottom
row (even if we extend the sequence to an arbitrary number of terms).

6 Spectrum and signatures
The theory of orderings of a field, as initiated by Artin and Schreier in [1], has
strong ties with the structure of the Witt ring of the field, through the study of
signatures. Various efforts have been made to extend this theory of signatures
to involutions (in [14] for involutions of the first kind, and [17] for involutions of
the second kind, see also [11, §11]) and hermitian forms, most notably by Astier
and Unger in a series of articles (mainly [2] and [3]).

The goal of this section is to expose how this theory fits in the framework
of mixed Witt rings, imitating the classical Artin-Schreier theory. While we
do not prove many fundamentally new result about signatures of hermitian
forms, we do provide a new point of view on a number of previously known
results and constructions, and we argue that this point of view at the very least
sheds an interesting light on the results of Astier and Unger, and allows for
more satisfying statements in some cases (however, we only treat the case of
involutions of the first kind). As an example of improvement, previously much
of the focus has been on the definition of an appropriate total signature of an
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hermitian form, which would be a (preferably continuous) function from the set
of orderings X(K) to Z, but this has always necessitated some arbitrary choices;
we define a canonical total signature s̃ign(x) which is a continuous function from
X̃(A, σ) to Z, where X̃(A, σ) is a canonical double-cover of X(K), and only then
we investigate how to make pertinent choices to obtain a (non-canonical) total
signature defined on X(K).

6.1 Orderings and signatures over fields
We start with a brief overview of the theory over fields, and we refer to [12] for
proofs.

Definition 6.1. A field K is formally real if −1 is not a sum of squares in K;
it is real closed if in addition no algebraic extension of K is formally real.

An ordering on a field K is a subgroup P ⊂ K∗ of index 2 which is stable
under addition and does not contain −1. We say that (K,P ) is an ordered field,
we write signP : K∗ → {±1} the morphism with kernel P , and signP (a) is called
the P -sign (or the sign if no confusion is possible) of a ∈ K∗. We can then speak
of P -positive and P -negative elements.

We write X(K) for the set of all orderings of K.
An extension of an ordered field (K,P ) is an ordered field (L,Q) such that

L/K is an extension with P = Q ∩K. If L/K is algebraic and (L,Q) is real
closed, then (L,Q) is called a real closure of K.

Proposition 6.2. A field K admits an ordering iff it is formally real; a real
closed field admits a unique ordering. Any ordered field (K,P ) admits a real
closure KP , unique up to a unique K-isomorphism.

Proposition 6.3. If L is real closed, then there is a (unique) ring isomorphism
between W (L) and Z, sending 〈a〉 to its sign relative to the unique ordering of
L, for all a ∈ L∗.

Thus for any ordering P on a field K, there is a unique ring morphism

signP : W (K) −→W (KP )
∼−→ Z,

called the signature of K at P , which extends the P -sign map on K∗ (meaning
that signP (〈a〉) = signP (a)). For any p ∈ N that is either 0 or a prime number,
we write

signP,p : W (K)
signP−−−→ Z −→ Z/pZ.

Then we set
IP,p(K) = Ker(signP,p).

We also write IP (K) = IP,0(K).

Proposition 6.4. For any ordering P on K, we have IP,2(K) = I(K). Fur-
thermore,

Spec(W (K)) = {I(K)}
∐

P∈X(K)

{IP,p(K) | p odd or 0}.

In particular, there is a canononical identification between X(K) and Spec0(W (K)).
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Remark 6.5. IfK is formally real,X(K) is also identified with minSpec(W (K))
(otherwise, X(K) is empty and minSpec(W (K)) = {I(K)}). This endows
X(K) with its so-called Harrison topology. In particular, X(K) is Hausdorff
and totally disconnected. In addition, it can be shown that it is compact, since
the embedding X(K) → {±1}K∗ given by P 7→ signP is actually a closed im-
mersion.

6.2 Canonical retractions
The fundamental ingredient in the definition of signature maps on mixed Witt
rings is the existence of certain natural ring morphisms:

Definition 6.6. Let (A, σ) be an algebra with involution over K. We say that
a ring morphism ρ : W̃ (A, σ) → W (K) is a retraction of W̃ (A, σ) if it is the
identity on W (K). We define similarly retractions of W̃ε(A, σ) which we also
call orthogonal and symplectic retractions of W̃ (A, σ) (depending on ε).

Example 6.7. The augmentation mapW (K)[Z/2Z]→W (K) defines a retrac-
tion ρ of W̃ (K, Id), which we call the canonical retraction of W̃ (K, Id).

We denote byHK the Hamilton quaternion algebra overK, so that its Brauer
class is [HK ] = (−1,−1) ∈ H2(K,µ2). Recall that a classical result of Frobenius
(at least for the real numbers) states that the only central division algebras over
a real closed field are K and HK , which explains why the Hamilton quaternions
play a crucial role in our exposition.

Proposition 6.8. Let K be a real closed field. Then there is a (unique) retrac-
tion ρ of W̃ (HK , γ), called the canonical retraction, such that ρ(〈1〉γ) = 2 and
ρ(〈z〉γ) = 0 for any non-zero pure quaternion z ∈ HK .

Proof. The uniqueness of ρ is clear since W±(HK , γ) is generated as a W (K)-
module by 〈1〉γ and the 〈z〉γ .

In general, for any quaternion algebra Q over any field K, if (V, h) ∈
W (Q, γ), then there is a natural quadratic form qh : V → K defined by qh(x) =
h(x, x), and it is easy to see that if h = 〈a1, . . . , an〉γ then qh = 〈a1, . . . , an〉nQ.
In our case, since nHK = 〈〈−1,−1〉〉, this means that 〈a1, . . . , an〉γ 7→ 4〈a1, . . . , an〉
is a well defined W (K)-module morphism W (HK , γ)→W (K). Since W (K) is
torsion-free, we can divide by 2 and get a morphism sending 〈1〉γ to 2. Thus
there is a unique W (K)-module morphism ρ satisfying the conditions of the
statement.

Clearly ρ(xy) = ρ(x)ρ(y) = 0 if x ∈ W (HK , γ) and y ∈ W−(HK , γ). We
just need to check that ρ(〈a〉γ · 〈b〉γ) = ρ(〈a〉γ)ρ(〈b〉γ) for all a, b ∈ K∗, and
ρ(〈z1〉γ · 〈z2〉γ) = ρ(〈z1〉γ)ρ(〈z2〉γ) for all z1, z2 ∈ HK non-zero pure quaternions.
According to proposition 3.22, this respectively means that

〈2ab〉nHK = (2〈a〉) · (2〈b〉)

and
〈−TrdQ(z1z2)〉ϕz1,z2 = 0

(unless z1 and z2 anti-commute, in which case the condition is trivial). The
first one is true because nHK = 4 ∈ W (K) and 〈2〉 is represented by nHK ; the
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second one is true because ϕz1,z2 is hyperbolic. Indeed, the square of any pure
quaternion in HK is negative, so (z2

1 , z
2
2) = (−1,−1) = [HK ], which by definition

of ϕz1,z2 means it is hyperbolic.

Remark 6.9. The proof shows that we can define a canonical retraction of
W̃−1(HK , γ) for any field K. Furthermore, we can define ρ on W̃ (HK , γ) as-
suming only that K is Pythagorean. On the other hand, no retraction can exist
on W̃ (HK , γ) if the Pythagoras number of K is at least 3. We do not know
whether there is always a retraction if the Pythagoras number is 2.

6.3 Signature maps
Since every central simple algebra over a real closed field is either split or Brauer-
equivalent to the Hamilton quaternions, we can make the following definition:

Definition 6.10. Let A be a central simple algebra over K. Then for any
ordering P ∈ X(K), we say that P is orthogonal with respect to A if AKP
is split; otherwise, AKP is Brauer-equivalent to HKP and we say that P is
symplectic with respect to A.

The set of orthogonal orderings of K with respect to A is denoted X+(A),
and the set of symplectic orderings is X−(A).

If P ∈ X+(A), we define (DP , θP ) = (KP , Id); if P ∈ X−(A), then (DP , θP ) =
(HKP , γ).

Example 6.11. If A is split, X+(A) = X(K) and X−(A) = ∅. On the other
hand, X+(HK) = ∅ and X−(HK) = X(K).

Remark 6.12. In the terminology of [2], Nil[A, σ] is X+(A) if σ is symplectic,
and X−(A) if σ is orthogonal. It is shown in [2, cor 6.5] that X+(A) and X−(A)
are clopen in X(K), and in particular are compact and totally disconnected (we
will also provide a proof).

Let (A, σ) be an algebra with involution over K. For any P ∈ X(K), let
us choose an arbitrary isomorphism fP : (AKP , σKP )→ (DP , θP ) in Brh(KP ).
Then we define a ring morphism

s̃ign
+

P : W̃ (A, σ) −→ W̃ (AKP , σKP )
(fP )∗−−−→ W̃ (DP , θP )

ρ−→W (KP )
sign−−→ Z

and call it a signature map of (A, σ) at P . Any other choice of fP has the form
〈a〉fP for some a ∈ K∗P . Since KP is real closed, 〈a〉 = ±〈1〉 in W (KP ), so there
are only two possible choices for fP , and the other choice (when a is negative)
leads to a different map s̃ign

−
P ; they are both equal to signP onW (K), and they

differ by a sign on W±(A, σ). The set {s̃ign
+

P , s̃ign
−
P } is well-defined, but the

labels + and − depend on the choice of fP and are a priori arbitrary (but see
section 6.5). When a statement does not depend on the choice of labels we will
sometimes write s̃ign

±
P to designate either of the two possible maps.

Note that by construction of the canonical retractions ρ, s̃ign
±
P are both zero

on W+(A, σ) if P ∈ X−(A) and are zero on W−(A, σ) if P ∈ X+(A). On the
other hand, Astier and Unger show:
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Lemma 6.13 ([2], thm 6.1). Let ε = ±1 and let P ∈ Xε(A). Then there
exists h ∈Wε(A, σ) such that s̃ign

±
P (h) 6= 0. In particular, s̃ign

+

P and s̃ign
−
P are

different functions on W̃ (A, σ).

We can now check that our construction is exhaustive:

Proposition 6.14. Let (A, σ) be an algebra with involution over K, and let
ε, ε′ = ±1. For any P ∈ Xε(K), the only ring morphisms W̃ε′(A, σ) → Z that
extend the signature signP on W (K) are s̃ign

+

P and s̃ign
−
P (with arbitrary labels

+ and −).
If ε = ε′ then these two morphisms are distinct on W̃ε′(A, σ), while if ε 6= ε′

they coincide on W̃ε′(A, σ) and are both zero on Wε′(A, σ).

Proof. Let f : W̃ε′(A, σ) → Z be a ring morphism extending signP , and let

x ∈ Wε′(A, σ). Then f(x)2 = signP (x2) = s̃ign
±
P (x)2, so f(x) = s̃ign

s(x)

P (x) for
some s(x) = ±1. Now we want to show that we can take s(x) constant.

If ε 6= ε′, we already noticed that both s̃ign
±
P are zero on Wε′(A, σ) so we

can choose s(x) arbitrarily for all x.
If ε = ε′, according to lemma 6.13, there is some y ∈ Wε′(A, σ) such that

s̃ign
±
P (y) 6= 0; in particular, s = s(y) is uniquely determined. Now for an

arbitrary x, if s̃ign
±
P (x) = 0 then we can choose s(x) arbitrarily so we take

s(x) = s, and if s̃ign
±
P (x) 6= 0, then

f(xy) = signP (xy) = s̃ign
s

P (xy) = s(x)s · s̃ign
s(x)

P (x)s̃ign
s

P (y) = s(x)s · f(x)f(y)

and since f(x)f(y) 6= 0, we have s(x)s = 1.

Remark 6.15. In [3, prop 7.4], lacking a a ring structure, Astier and Unger
show a slightly stronger result (with the cost of a more involved proof): s̃ign

+

P

is the only W (K)-module morphisms extending signP , where we see Z as a
W (K)-module through signP , up to multiplication by an arbitrary integer on
W±(A, σ). So the only thing that compatibility with the product of hermitian
forms adds to our statement is a normalization condition (our morphisms can
only differ by a sign on W±(A, σ) and not an arbitrary integer). On that
subject, it should be noted that they normalize the signature maps at symplectic
orderings so that they give surjective maps W−(A, σ) → Z, while with our
construction we get a map to 2Z (which is necessary to get a ring morphism).

Corollary 6.16. Let (A, σ) be an algebra with involution over K, and let P ∈
X(K). There are exactly two different ring morphisms W̃ (A, σ)→ Z that extend
the signature signP on W (K), namely s̃ign

+

P and s̃ign
−
P (with arbitrary labels +

and −).

Remark 6.17. We can also define a signature of the involution σ: sign±P (σ)
def
=

s̃ign
±
P (〈1〉σ). We again encounter a sign ambiguity, which is why in [14] only the

absolute value | sign±P (σ)| is defined, and taken as the definition of the signature
of σ. Note that the definitions agree since they characterize signP (σ) ∈ N by
signP (σ)2 = signP (Tσ), and of course Tσ = 〈1〉2σ in W̃ (A, σ).
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6.4 The spectrum of the mixed Witt ring
Now that we have our signature maps, we want to obtain a description of
Spec(W̃ (A, σ)) similar to proposition 6.4 for W (K).

Let P ∈ X(K) and let p ∈ N be either 0 or a prime number. Assume we
chose a labelling of s̃ign

+

P and s̃ign
−
P . Then we define

s̃ign
±
P,p : W̃ (A, σ)

s̃ign
±
P−−−→ Z −→ Z/pZ

and
I±P,p(A, σ) = Ker(s̃ign

±
P,p),

which is by construction a prime ideal of W̃ (A, σ) (maximal if p 6= 0).
Let P ∈ Xε(K). Then since s̃ign

±
P is zero on W−ε(A, σ), we can write

I±P,p(A, σ) = J±P,p(A, σ)⊕W−ε(A, σ)

with
J±P,p(A, σ) = I±P,p(A, σ) ∩Wε(A, σ).

Proposition 6.18. Let (A, σ) be an algebra with involution over K. Then
I(A, σ) is the only prime ideal of W̃ (A, σ) with residual characteristic 2; in
particular, for any P ∈ X(K), we have I±P,2(A, σ) = I(A, σ). Furthermore,
consider the following natural commutative diagram of schemes:

Spec(W̃ (A, σ))

Spec(W̃+(A, σ)) Spec(W̃−(A, σ))

Spec(W (K)).

π

π+ π−

The fiber of π above I(K) ∈ Spec(W (K)) is {I(A, σ)}.
Let P ∈ X(K), and p be either 0 or an odd prime. The fiber of π above

IP,p(K) is {I+
P,p(A, σ), I−P,p(A, σ)} (the two being distinct).

If P ∈ Xε(A), the fiber of πε above IP,p(K) is {J+
P,p(A, σ), J−P,p(A, σ)} (the

two being distinct), while the fiber of π−ε is {IP,p(K)⊕W−ε(A, σ)}.

Proof. Let I ⊂ W̃ (A, σ) be a prime ideal with residual characteristic 2. Then
I ∩W (K) is a prime ideal with residual characteristic 2, so I ∩W (K) = I(K).
If x ∈ W±(A, σ), then x ∈ I iff x2 ∈ I(K), which is equivalent to rdim2(x)2 =
0 ∈ Z/2Z, so x ∈ I(A, σ). So I(A, σ) ⊂ I, and since I(A, σ) is a maximal ideal
we have equality. This implies the statement about I±P,2(A, σ) and about the
fiber of π above I(K).

Now let P ∈ Xε(K), and p be either 0 or an odd prime; we set R = Z/pZ.
Let I be in the fiber of πε′ above IP,p(K), and let f : W̃ε′(A, σ) → S be the
surjective morphism with kernel I, with R ⊂ S. Then the same proof as for
proposition 6.14 shows that R = S and f = s̃ign

s

P,p for some s = ±1 (which
is uniquely determined when ε = ε′). Indeed, we show the same way that for
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fixed x ∈ Wε′(A, σ) we have f(x)2 = s̃ign
±
P,p(x)2 ∈ R, which shows that R = S

since S is integral. The rest of the reasoning is also the same, the only difference
being that we have to invoque that p 6= 2 to justify that we get two different
signature maps when ε = ε′.

Now suppose I is in the fiber of π above IP,p(K). Then we just showed that
I ∩ W̃ε(A, σ) = JsP,p for some s = ±1 and that I ∩ W̃−ε(A, σ) = IP,p(K) ⊕
W−ε(A, σ). This shows that I = IsP,p(A, σ).

Remark 6.19. In the continuity of remark 6.15, Astier and Unger show in [3,
6.5,6.7] slightly different and arguably stronger results, since they obtain a sim-
ilar classification without asking that their “ideals” be stable by multiplication
by a hermitian form. There is however a difference for primes above I(K), since
they find many such “ideals” (but of course only I(A, σ) is an actual ideal).

Emulating the classical case, we set

X̃(A, σ) = Spec0(W̃ (A, σ))

as a topological subspace of Spec(W̃ (A, σ)); its elements are the I±P for P ∈
X(K). When K is formally real, this is also minSpec(W̃ (A, σ)) (otherwise,
X̃(A, σ) is empty, while minSpec(W̃ (A, σ)) is a single point). Thus the con-
tinuous map π : Spec(W̃ (A, σ)) → Spec(W (K)) induces a continuous two-
to-one map π : X̃(A, σ) → X(K). We also set X̃ε(A, σ) = π−1(Xε(A)),
so that X̃ε(A, σ) → Xε(A) is also a continuous two-to-one map. We easily
see from proposition 6.18 that Spec0(W̃ε(A, σ)) is canonically identified with
X̃ε(A, σ)

∐
X−ε(K).

As in the classical case we have a total signature:

Definition 6.20. Let (A, σ) be an algebra with involution over K. The total
signature of any x ∈ W̃ (A, σ) is the function

s̃ign(x) : X̃(A, σ) −→ Z

such that s̃ign(x)(IεP ) = s̃ign
ε

P (x) (which does not depend on any choice of la-
belling for the signature maps).

Proposition 6.21. Let (A, σ) be an algebra with involution over K. Then for
any x ∈ W̃ (A, σ), the total signature s̃ign(x) is a continuous function.

Proof. By definition, s̃ign(x)−1({n}) is the intersection of X̃(A, σ) with the
Zariski-closed set V (x− n〈1〉) in Spec(W̃ (A, σ)), so it is closed in X̃(A, σ).

Corollary 6.22. The topological space X̃(A, σ) is compact and totally discon-
nected.

Proof. Let us consider the function

F : X̃(A, σ) −→ {−1, 0, 1}W̃ (A,σ)

ĨεP 7−→ (x 7→ τ(s̃ign
ε

P (x)))

where τ : Z → {−1, 0, 1} maps non-zero integers to their sign. Then we claim
that F is injective and continuous; since the target space is compact this is a
homeomorphism onto its image, which concludes.

71



The injectivity is clear: if two ideals have the same image, then considering
the restriction to elements 〈a〉 ∈W (K) we see that they must correspond to the
same P ∈ X(K), and if the signature maps have the same signs on hermitian
forms they are equal.

For continuity, note that F corresponds to the same map

Φ : X̃(A, σ)× W̃ (A, σ)→ {−1, 0, 1}

as τ ◦ s̃ign. Since each s̃ign(x) is continuous, Φ is continuous for the product
topology if we put the discrete topology on W̃ (A, σ), and so F is continuous.

6.5 Polarizations
One on the main goals in [2] and [3] can be interpreted as the definition of an
appropriate total signature that is defined on X(K) instead of X̃(A, σ) (this is
what they callM-signatures and H-signatures).

Definition 6.23. Let (A, σ) be an algebra with involution over K. If U is an
open subset of X(K), a local polarization of (A, σ) over U is a set-theoretical
section of π on U . We write PolU (A, σ) for the set of local polarizations over
U . If s ∈ PolU (A, σ), we say that −s ∈ PolU (A, σ), such that −s(P ) 6= s(P ) for
all P ∈ U , is the opposite (local) polarization of s.

When U = X(K) (resp. X+(A), X−(A)), we speak of a global (resp. or-
thogonal, symplectic) polarization of (A, σ), and the set of those is denoted by
Pol(A, σ) (resp. Pol+(A, σ), Pol−(A, σ)). A global polarization is also simply
called a polarization.

If s ∈ Pol(A, σ), then for any x ∈ W̃ (A, σ), the total signature of x relative
to s is

s̃ign
s
(x) : X(K)

s−→ X̃(A, σ)
s̃ign(x)−−−−→ Z.

We also write s̃ign
s

P (x) = s̃ign
s
(x)(P ).

Clearly Pol(A, σ) ' Pol+(A, σ)×Pol−(A, σ). The way we see things is that
a polarization is the choice of a labelling of s̃ign

+

P and s̃ign
−
P , and an orthogonal

(resp. symplectic) polarization is such a choice for only the P ∈ X+(A) (resp.
X−(A)). The way we defined the signature maps shows that a choice of polar-
ization is also equivalent to a choice of Morita equivalence between (AKP , σKP )

and (DP , θP ) for all P ∈ X(K), but the global structure of X̃(A, σ) makes
it much more convenient to discuss polarizations. Our goal is to find relevant
natural classes of polarizations, or even ideally natural polarizations on various
(A, σ).

Remark 6.24. The notion of M-signature in [2] corresponds to an arbitrary
(orthogonal/symplectic) polarization.

Remark 6.25. For any polarization s, and any x ∈ W (K), s̃ign
s
(x) is the

classical total signature sign(x) : X(K)→ Z.

There are natural symmetries of polarizations that we want to emphasize.
Let G be the group of set-theoretical automorphisms of π, and Gc (for contin-
uous) the group of topological automorphisms of π. Then G can be identified
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with the multiplicative group F(X(K), {±1}): a function f : X(K) → {±1}
acts by swapping the elements of the fiber above P ∈ X(K) iff f(P ) = −1. This
is also naturally isomorphic to the group (P(X(K)),∆) of subsets of X(K) with
the symmetric difference, is we associate f to f−1({−1}). Then Gc ⊂ G cor-
responds to the continuous functions inside F(X(K), {±1}), and to the clopen
subsets inside P(X(K)). Clearly G acts, simply transitively, on Pol(A, σ). If
f ∈ F(X(K), {±1}), then its action (as an element of G) on the total signatures

is s̃ign
f ·s

= f s̃ign
s
. The function s 7→ −s corresponds to the constant function

−1 in F(X(K), {±1}), and to X(K) ∈ P(X(K)).
Note that since π is the application of the functor Spec0 to the inclusion

W (K) → W̃ (A, σ), there is a canonical embedding of the W (K)-algebra au-
tomorphisms of W̃ (A, σ) in Gc. We call Ga (for algebraic) the image of the
embedding. The image of the subgroup of standard automorphisms is denoted
Gs (for standard). This action can also be deduced from the fact that by con-
struction, (A, σ) 7→ X̃(A, σ) defines a functor from Brh(K) to the category of
sets above X(K). Note that Gs is naturally a quotient of K∗ since standard
automorphisms have the form (〈a〉σ)∗ for some a ∈ K∗.

We then have
Gs ⊂ Ga ⊂ Gc ⊂ G,

and if we cannot find a canonical element of Pol(A, σ) for an arbritrary (A, σ) we
can at least try to find canonical classes in Pol(A, σ)/H for those various sub-
groups H ⊂ G (of course Pol(A, σ)/G = {∗}), or maybe at least in Polε(A, σ)/H
for some ε.

Remark 6.26. Note that by functoriality with respect toBrh(K), Pol(A, σ)/Gs
only depends on the Brauer class [A].

The topological nature of our spaces makes it very natural to investigate the
following class:

Definition 6.27. We write Polc(A, σ) for the set of continuous polarizations
on (A, σ), that is continuous sections of π. Likewise, we have Polc+(A, σ) and
Polc−(A, σ), so that Polc(A, σ) ' Polc+(A, σ)× Polc−(A, σ).

Remark 6.28. By construction, a polarization is the same as a set-theoretic
section of π : Spec(W̃ (A, σ)) → Spec(W (K)) that is compatible with the spe-
cialization of points. Then a continuous polarization is the same as a continuous
section of π.

Proposition 6.29. Let (A, σ) be an algebra with involution over K. A polar-
ization s ∈ Pol(A, σ) is continuous iff for all x ∈ W̃ (A, σ), the total signature
s̃ign

s
(x) relative to s is continuous on X(K).

Proof. Since the absolute total signature s̃ign(x) is continuous on X̃(A, σ) (propo-
sition 6.21), clearly if s is a continuous section of π then the composition s̃ign

s
(x)

is also continuous.
Conversely, assume all s̃ign

s
(x) are continuous on X̃(A, σ). Let D(x) ⊂

Spec(W̃ (A, σ)) be the open subset defined by x (ie the open subscheme defined
by the localization at x). By construction, D0(x) := D(x) ∩ X̃(A, σ) is the
subset on which s̃ign(x) takes non-zero values, so s−1(D0(x)) is the subset of
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X(K) on which s̃ign
s
(x) takes non-zero values. By hypothesis, it is open in

X(K). Since the D0(x) form an open basis of X̃(A, σ), this means that s is
continuous.

It follows from the definition of Gc that if Polc(A, σ) is not empty, then it
is a simply transitive Gc-set, so it defines a class in Pol(A, σ)/Gc. Thus we
just need to know whether there is one continuous polarization to find all of
them. This is strongly related to the study of H-signatures in [3], as we will
now investigate.

Definition 6.30. Let (A, σ) be an algebra with involution over K. If x ∈
W̃ (A, σ), we write

U(x) = {P ∈ X(K) | s̃ign
+

P (x) 6= s̃ign
−
P (x)}.

We call U(x) the principal subset of X(K) defined by x.
We also define sx ∈ PolU(x)(A, σ), called the principal local polarization

defined by x, as the unique local polarization such that s̃ign
sx

P (x) > s̃ign
−sx
P (x)

for all P ∈ U(x).

Proposition 6.31. Let (A, σ) be an algebra with involution over K Then for
any x ∈ W̃ (A, σ), U(x) is a clopen subset of X(K), and sx : U(x) → X̃(A, σ)
is a continuous local polarization of (A, σ) over U(x).

Proof. Let τ : X̃(A, σ) → X̃(A, σ) be the function that swaps the elements
of every fiber of π. It is continuous, for instance because it is induced by the
standard automorphism defined by 〈−1〉σ. We define f : X̃(A, σ) → Z2 by
f = (s̃ign(x), s̃ign(x) ◦ τ), and

S = {(m,n) ∈ Z2 |m 6= n}, S+ = {(m,n) ∈ Z2 |m > n}.

Then U(x) = π(f−1(S)) and Im(sx) = f−1(S+), so Im(sx) is closed in
X̃(A, σ) and U(x) is clopen in X(K) (here we use the compacity of X̃(A, σ)).
Now if Y is any closed set in X̃(A, σ), then s−1

x (Y ) = π(Y ∩ Im(sx)), so it is
closed in X(K), which shows that sx is continuous.

Then we interpret the results in [3] as:

Theorem 6.32. Let (A, σ) be an algebra with involution over K. Then for any
x1, . . . , xn ∈Wε(A), there exists x ∈Wε(A, σ) such that U(x1) ∪ · · · ∪ U(xn) =
U(x). In particular, there exists x ∈ Wε(A, σ) such that U(x) = Xε(A), so
there exist global continuous polarizations, and X̃(A, σ) ≈ X(K)

∐
X(K) as

topological spaces, with π being the canonical projection.
Furthermore, the class of global principal polarizations is a transitive Gc-set,

thus it is exactly Polc(A, σ).

Proof. The existence of x ∈Wε(A, σ) such that
⋃
U(xi) = U(x) is a reformula-

tion of [3, 3.1]. The existence of x ∈ Wε(A, σ) such that U(x) = Xε(A) follows
by compacity, since lemma 6.13 shows that the U(xi) form an open cover of
Xε(A). Since Polc+(A, σ) and Polc−(A, σ) are non-empty, so is Polc(A, σ). If
s ∈ Pol(A, σ), then X̃(A, σ) = Im(s)

∐
Im(−s), and if s is continuous, Im(s)

and Im(−s) are homeomorphic to X(K).
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The fact that the principal polarizations are a transitive Gc-set is a refor-
mulation of [3, 3.3]. Since they are included in Polc(A, σ) and Polc(A, σ) is also
a transitive Gc-set, we can conclude.

Remark 6.33. With this framework, the weaker lemma 6.13 simply states that
the U(x) with x ∈ Wε(A, σ) form a open cover of Xε(A), whichs shows that
X̃(A, σ) is a double cover of X(K), since it has local trivialization. The notion
of H-signatures in [2] corresponds to taking a finite open cover of Xε(A) by prin-
cipal subsets (which exists by compacity). In general, H-signatures correspond
to continuous polarizations.

Given that Spec(W̃ (A, σ)) is not only a topological space but a scheme,
we also have another natural class of polarizations: if ρ : W̃ (A, σ) → W (K)
is a retraction (see definition 6.6), then applying the Spec functor gives a
scheme morphism ρ∗ : Spec(W (K)) → Spec(W̃ (A, σ)), so in particular a con-
tinuous polarization. We call polarizations of this form algebraic polarizations
of (A, σ), and we write Pola(A, σ). Similarly, orthogonal (resp. symplectic)
retractions define the set Pola+(A, σ) (resp. Pola−(A, σ)) of algebraic orthogo-
nal (resp. symplectic) polarizations of (A, σ). There is an obvious injection
Pola(A, σ) ⊂ Pola+(A, σ) × Pola−(A, σ), but it is not clear if it is surjective in
general. The existence of an algebraic (global, orthogonal or symplectic) polar-
ization of (A, σ) obviously depends only on the Brauer class [A].

Remark 6.34. By construction, Ga acts on Pola+(A, σ) and Pola−(A, σ), and
it acts transitively on Pola(A, σ). In particular, there is a well-defined “alge-
braic” element in Pol(A, σ)/Ga, and the sets Pola(A, σ)/Gs, Pola+(A, σ)/Gs and
Pola−(A, σ)/Gs are well-defined, and they only depend on the Brauer class [A].

Example 6.35. If A is split, there are algebraic polarizations of (A, σ), by
example 6.7.

Example 6.36. According to proposition 6.8 and remark 6.9, there is always a
canonical algebraic symplectic polarization of (HK , γ), and if K is Pythagorean
there is a canonical global algebraic polarization. On the other hand, (HK , γ)
does not have algebraic polarizations if the Pythagoras number of K is at least
3.

We do not know of any other cases where algebraic polarizations exist, and
it would be interesting to characterize the Brauer classes for which it is the case.
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